
CS 3630

Differential Drive
Robots

Mobile Robots
• There are many kinds of wheeled mobile robots.
• In this class, we primarily study differential drive robots.
• The Duckiebot is a differential drive robot.

Mobile Robot Kinematics
• Relationship between input commands (e.g., wheel velocity) and pose of

the robot, not considering forces. If the wheels turn at a certain rate, what
is the resulting robot motion?

• No direct way to measure pose (unless we sensorize the environment), but
we can integrate velocity (odometry) to obtain a good estimate.

1968 1951

1952

More Modern AGVs

Differential Drive Robots

Two wheels with a common axis, and that can spin independently

Differential Drive Robots

yI

xI

s(t)
T

v(t)

𝐿

Wheel radius is 𝑟

Baseline distance between wheels is 𝐿

𝑟

The configuration of the robot can be specified by
𝑞 = (𝑥, 𝑦, 𝜃)

At any moment in time, the instantaneous velocity
of the robot is given by

𝑣 𝑡 =
𝑣𝑥
𝑣𝑦 , ሶ𝜃 = 𝜔

This robot cannot move instantaneously in
the direction perpendicular to the forward
velocity: 𝑣𝑦 = 0

NOTE: These velocities are specified w.r.t. the robot’s coordinate frame.

Differential Drive Robots

yI

xI

s(t)
T

v(t)

𝐿
𝑟

When both wheels turn with the same velocity and same
direction, we have pure forward motion:

ሶ𝜙𝑅 =
𝑣𝑥
𝑟

, ሶ𝜙𝐿 =
𝑣𝑥
𝑟

When the wheels turn in opposite directions with the
same velocity, we have pure rotation:

ሶ𝜙𝑅 =
𝜔𝐿
2𝑟

, ሶ𝜙𝐿 = −
𝜔𝐿
2𝑟

Combining the two (velocities are linear, so superposition applies) we obtain:

ሶ𝜙𝑅 =
𝜔𝐿
2𝑟

+
𝑣𝑥
𝑟
, ሶ𝜙𝐿 = −

𝜔𝐿
2𝑟

+
𝑣𝑥
𝑟

ሶ𝜙 = speed of wheel rotation

Differential Drive Robots
yI

xI

s(t)
T

v(t)

𝐿
𝑟

We have equations that define wheel angular velocity in
terms of linear and angular velocity of the robot:

ሶ𝜙𝑅 =
𝜔𝐿
2𝑟

+
𝑣𝑥
𝑟
, ሶ𝜙𝐿 = −

𝜔𝐿
2𝑟

+
𝑣𝑥
𝑟

A bit of algebra gives the desired relationship between
input (wheel velocity) and output (linear and angular
velocity of the robot):

𝑟
2
(ሶ𝜙𝑅 + ሶ𝜙𝐿) = 𝑣𝑥,

𝑟
𝐿
(ሶ𝜙𝑅 − ሶ𝜙𝐿) = 𝜔 = ሶ𝜃

Differential Drive Robots

𝑣𝑥
𝑣𝑦
𝜔

=

𝑟
2 (

ሶ𝜙𝑅 + ሶ𝜙𝐿)
0

𝑟
𝐿 (

ሶ𝜙𝑅 − ሶ𝜙𝐿)

Motion relative to the world frame

ሶ𝑥
ሶ𝑦
ሶ𝜃
=

𝑣𝑥 cos 𝜃
𝑣𝑥 sin 𝜃

𝜔
or as

ሶ𝑥
ሶ𝑦
ሶ𝜃
=

cos 𝜃 0
sin 𝜃 0
0 1

𝑣
𝜔

𝑣0 = cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃

𝑣𝑥
0 = 𝑣𝑥 cos 𝜃

𝑣𝑥 sin 𝜃

ሶ𝜃 = 𝜔

We transform the robot velocity to world coordinates using
our usual coordinate transformation:

We typically write the equations of motion as:

𝑣𝑥
𝑣𝑦
𝜔

=

𝑟
2 (

ሶ𝜙𝑅 + ሶ𝜙𝐿)

0
𝑟
𝐿 (

ሶ𝜙𝑅 − ሶ𝜙𝐿)

We typically think of the robot as a device with
linear and angular velocity input, rather than
think about wheel RMPs.

CS 3630
Motion Planning

in the Plane

With lots of slides and ideas
from:

Howie Choset
Greg Hager
Zack Dodds
Nancy Amato

Mobile Robots
◼ In general, motion planning is intractable.
◼ For certain special cases, efficient algorithms exist.
◼ Mobile robots that move in the plane are much

simpler than robot arms, mobile manipulators,
humanoid robots, etc.

◼ The main simplifying property is that we can often
treat path planning as a two-dimensional problem
for a point moving in the plane, 𝑥 ∈ ℜ2.

◼ Today --- path planning algorithms for such robots.

Roadmap methods
Capture the connectivity of the free space by a
graph or network of paths.

Roadmaps
A roadmap, 𝑅𝑀, is the union of one-dimensional curves such that
for all 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑔𝑜𝑎𝑙 that can be connected by a collision- free
path:
◼ Accessibility: There is a collision-free path connecting 𝑥𝑠𝑡𝑎𝑟𝑡 to

some point 𝑥1 ∈ 𝑅𝑀.
◼ Departability: There is a collision-free path connecting 𝑥𝑔𝑜𝑎𝑙 to

some point 𝑥2 ∈ 𝑅𝑀.
◼ Connectivity: There is a path in 𝑅𝑀 connecting 𝑥1 and 𝑥2.

If such a roadmap exists, then a free path from 𝑥𝑠𝑡𝑎𝑟𝑡 to 𝑥𝑔𝑜𝑎𝑙can
be constructed from these three sub-paths, and the path planning
problem can be reduced to finding the three sub-paths.

RoadMap Path Planning
1. Build the roadmap

a) nodes are points in the free space or its boundary
b) two nodes are connected by an edge if there is a free path

between them

2. Connect start end goal points to the road map
at point 𝑥1 and 𝑥2 , respectively

3. Find a path on the roadmap between 𝑥1 and 𝑥2

The result is a path from start to goal

Shortest, But Possibly Dangerous Paths

The Visibility Graph

Visibility Graph methods

• If there is there a path, then the shortest path is in the visibility graph
• If we include the start and goal nodes, they are automatically connected
• Algorithms for constructing them can be efficient

➢𝑂 𝑛3 brute force (i.e., naïve)
➢𝑂 𝑛2 log 𝑛 if clever

◼ Defined for polygonal obstacles
◼ Nodes correspond to vertices

of obstacles
◼ Nodes are connected if

◼ they are connected by an
edge on an obstacle

OR
◼ the line segment joining

them is in free space

The Visibility Graph in Action (Part 1)
◼ First, draw lines of sight from the start and goal to all “visible”

vertices and corners of the world.

start

goal

The Visibility Graph in Action (Part 2)
◼ Second, draw lines of sight from every vertex of every obstacle like

before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 3)
◼ Second, draw lines of sight from every vertex of every obstacle like

before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 4)
◼ Second, draw lines of sight from every vertex of every obstacle like

before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph (Done)
◼ Repeat until you’re done.
◼ If there are 𝑛 vertices, then there are 𝑂 𝑛2 edges in the

visibility graph – this is a bound, not the exact number of
edges.

start

goal

Reduced Visibility Graphs
◼ The current graph as too many edges

◼ lines to concave vertices
◼ lines that “head into” the object

◼ A reduced visibility graph consists of
◼ Vertices that are convex
◼ Edges that are “tangent” (i.e. do not head into the object at either

endpoint)

interestingly, this all only works in �2

Carnegie Mellon

http://motionplanning.com choset@cs.cmu.edu

Carnegie Mellon

A Sweepline Algorithm:
Initially:

calculate the angle ai of segment v-vi and sort
vertices by this creating list E
create a list of edges that intersect the horizontal
from v sorted by intersection distance

For each ai
if vi is visible to v then add v-vi to graph
if vi is the “beginning” of an edge E, insert E in S
if vi is the “end” of and edge E, remove E from S

Carnegie Mellon

http://motionplanning.com choset@cs.cmu.edu

Carnegie Mellon

The Sweepline Algorithm

Analysis: For a vertex, n log n to create initial list, log n for each ai
Overall: n log (n) (or n2 log (n) for all n vertices

Carnegie Mellon

http://motionplanning.com choset@cs.cmu.edu

Carnegie Mellon

Algorithm:
Initially:

calculate the angle ai of segment v-vi and sort
vertices by this creating list E
create a list of edges that intersect the horizontal
from v sorted by intersection distance

For each ai
if vi is visible to v then add v-vi to graph
if vi is the “beginning” of an edge E, insert E in S
if vi is the “end” of and edge E, remove E from S

Safe Paths that Have Large Clearance
to Obstacles

The Generalized Voronoi Diagram

Voronoi Diagrams

Generalized Voronoi Diagrams

Beyond Points: Basic Definitions

iC

𝑑𝑖 𝑥 is the distance from the point 𝑥 to the
nearest point that belongs to an obstacle.

𝛻di x = 𝑥−𝑐
| 𝑥 −𝑐 |

we’ll use this later…
di x = min

c∈𝜕𝐶𝑖
d(x, c)

𝒙

Two-Equidistant
A Two-equidistant surface is the set of points equally
distant to two obstacles.

𝑺𝒊𝒋 = 𝒙 𝒅𝒊 𝒙 − 𝒅𝒋 𝒙 = 𝟎|𝑪𝒊

𝑪𝒋

More Frugal Definition

Two-Equidistant Face

𝐹𝑖𝑗 = x ∈ 𝑆𝑖𝑗 𝑑𝑖 𝑥 = 𝑑𝑗 𝑥 < 𝑑𝑘 𝑥 , for all ℎ ≠ 𝑖, 𝑗

𝑆𝑖𝑗
𝑪𝒌

𝑪𝒊

𝑪𝒋

𝒙 𝒙′

𝒅𝒊 𝒙 = 𝒅𝒋 𝒙 < 𝒅𝒌(𝒙)

𝒅𝒌 𝒙′ < 𝒅𝒊 𝒙′ = 𝒅𝒋 𝒙′

General Voronoi Diagram

� �
1

1 1

GVD
−

= +=

=
n

i

n

ij
ijF

What about concave obstacles?

vs

What about concave obstacles?

vs
id�

jd�

id�

jd�

What about concave obstacles?

vs
id�

jd�

id�

jd�

id�
jd�

jd�

id�

Two-Equidistant

◼ Two-equidistant surface

◼ Two-equidistant surjective surface

}0)()(:{ free =−�= xdxdQxS jiij

jC
iC

ijS

id�

jd�
)}()(:{ xdxdSxSS jiijij �z��=

}),()(:{ ihxdxdSSxF hiijij z�d�=

� �
1

1 1

GVD
−

= +=

=
n

i

n

ij
ijF

Accessibility (in the Plane)

Follow the gradient of the distance function until another
obstacle is equally close.

A Discrete Version of the
Generalized Voronoi Diagram

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this
• need to define a grid on space
• need to define connectivity (4/8)
• obstacles start with a 1 in grid; free space is zero

4 8

Brushfire Algorithm

• Initially: create a queue 𝐿 of pixels on the boundary of all obstacles, set
𝑑 𝑡 = 0 for each non-boundary grid cell 𝑡

• While 𝐿 ≠ ∅
– pop the top element 𝑡 of 𝐿
– if 𝑑(𝑡) = 0

• 𝑑 𝑡 ← 1 + min
𝑡′∈𝑁 𝑡 ,𝑑 𝑡′ ≠0

𝑑(𝑡′)

• 𝐿 ← 𝐿 ∪ 𝑡′ ∈ 𝑁 𝑡 𝑑 𝑡 = 0} /* add unvisited neighbors to 𝐿

The result is a distance map 𝑑 where each cell holds the minimum distance to
an obstacle.

Local maxima of 𝑑 define the cells at which “wave fronts” cross, and these lie
on the discrete Generalized Voronoi Diagram.

Brushfire example

Note that the curves
here are not at all
perfect…

Path Planning for Large Empty Spaces

Cell Decomposition

Cell Decomposition
◼ Don’t explicitly build a 1-D Roadmap.
◼ The “Roadmap” corresponds to the adjacency

graph of the cellular decomposition.
◼ Nodes in the adjacency graph correspond to free

cells.
◼ Arcs in the adjacency graph connect nodes that

correspond to adjacent cells.

Definition

Qfree

Qfree

Adjacency Graph
◼ Node correspond to a cell
◼ Edge connects nodes of adjacent cells

◼ Two cells are adjacent if they share a common boundary

c11
c1

c2

c4

c3
c6

c5 c8

c7

c
10

c9
c12

c13

c14

c15

c1 c10

c2

c3

c4 c5

c6

c7

c8

c9

c11

c12

c13

c14

c15

Path Planning
◼ Path Planning in two steps:

◼ Planner determines cells that contain the start and goal
◼ Planner searches for a path within adjacency graph

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition

Trapezoidal Decomposition Path

Implementation
◼ Input is vertices and edges
◼ Sort n vertices O(n logn)
◼ Determine vertical extensions

◼ For each vertex, intersect vertical line with each edge –
O(n) time

◼ Total O(n2) time

Sweep line approach

Sweep a line through the space stopping at vertices which are often
called events

Maintain a list L of the current edges the slice intersects

Determining the intersection of slice with L requires O(n) time but with
an efficient data structure like a balanced tree, perhaps O(log n)

Really, determine between which two edges the vertex or event lies
These edges are

So, really maintaining L takes O(n log n) – log n for insertions, n for vertices

Events

In

Out Middle

Example

Example
Each insertion or deletion
requires 𝑂(log 𝑛) time

Example

Example

Trapezoidal Decomposition

