CS 3630

Differential Drive Robots

Mobile Robots

- There are many kinds of wheeled mobile robots.
- In this class, we primarily study differential drive robots.
- The Duckiebot is a differential drive robot.

Mobile Robot Kinematics

- Relationship between input commands (e.g., wheel velocity) and pose of the robot, not considering forces. If the wheels turn at a certain rate, what is the resulting robot motion?
- No direct way to measure pose (unless we sensorize the environment), but we can integrate velocity (odometry) to obtain a good estimate.

More Modern AGVs

Differential Drive Robots

Two wheels with a common axis, and that can spin independently

Differential Drive Robots

Wheel radius is r

The configuration of the robot can be specified by

$$
q=(x, y, \theta)
$$

At any moment in time, the instantaneous velocity of the robot is given by

$$
v(t)=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right], \quad \dot{\theta}=\omega
$$

This robot cannot move instantaneously in the direction perpendicular to the forward velocity: $v_{y}=0$

NOTE: These velocities are specified w.r.t. the robot's coordinate frame.

Differential Drive Robots

When both wheels turn with the same velocity and same
 direction, we have pure forward motion:

$$
\dot{\phi}_{R}=\frac{v_{x}}{r}, \quad \dot{\phi}_{L}=\frac{v_{x}}{r}
$$

When the wheels turn in opposite directions with the same velocity, we have pure rotation:

$$
\dot{\phi}_{R}=\frac{\omega L}{2 r}, \quad \dot{\phi}_{L}=-\frac{\omega L}{2 r}
$$

Combining the two (velocities are linear, so superposition applies) we obtain:

$$
\dot{\phi}_{R}=\frac{\omega L}{2 r}+\frac{v_{x}}{r}, \quad \dot{\phi}_{L}=-\frac{\omega L}{2 r}+\frac{v_{x}}{r}
$$

Differential Drive Robots

We have equations that define wheel angular velocity in terms of linear and angular velocity of the robot:

$$
\dot{\phi}_{R}=\frac{\omega L}{2 r}+\frac{v_{x}}{r}, \quad \dot{\phi}_{L}=-\frac{\omega L}{2 r}+\frac{v_{x}}{r}
$$

A bit of algebra gives the desired relationship between input (wheel velocity) and output (linear and angular velocity of the robot):

$$
\left[\begin{array}{l}
v_{x} \\
v_{y} \\
\omega
\end{array}\right]=\left[\begin{array}{c}
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \\
\frac{r}{\frac{r}{L}}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)
\end{array}\right]
$$

$$
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right)=v_{x}, \quad \frac{r}{L}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)=\omega=\dot{\theta}
$$

Motion relative to the world frame

We transform the robot velocity to world coordinates using our usual coordinate transformation:

$$
\begin{gathered}
v^{0}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{x} \cos \theta \\
v_{x} \sin \theta
\end{array}\right] \quad\left[\begin{array}{c}
v_{x} \\
v_{y} \\
\omega
\end{array}\right]=\left[\begin{array}{c}
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \\
0 \\
\frac{r}{L}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)
\end{array}\right] \\
\dot{\theta}=\omega
\end{gathered}
$$

We typically think of the robot as a device with linear and angular velocity input, rather than think about wheel RMPs.
We typically write the equations of motion as:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
v_{x} \cos \theta \\
v_{x} \sin \theta \\
\omega
\end{array}\right] \quad \text { or as } \quad\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

CS 3630 Motion Planning in the Plane

With lots of slides and ideas from:

Howie Choset
Greg Hager
Zack Dodds
Nancy Amato

Mobile Robots

- In general, motion planning is intractable.
- For certain special cases, efficient algorithms exist.
- Mobile robots that move in the plane are much simpler than robot arms, mobile manipulators, humanoid robots, etc.
- The main simplifying property is that we can often treat path planning as a two-dimensional problem for a point moving in the plane, $x \in \mathfrak{R}^{2}$.
- Today --- path planning algorithms for such robots.

Roadmap methods

Capture the connectivity of the free space by a graph or network of paths.

Roadmaps

A roadmap, $R M$, is the union of one-dimensional curves such that for all $x_{\text {start }}$ and $x_{\text {goal }}$ that can be connected by a collision- free path:

- Accessibility: There is a collision-free path connecting $x_{\text {start }}$ to some point $x_{1} \in R M$.
- Departability: There is a collision-free path connecting $x_{\text {goal }}$ to some point $x_{2} \in R M$.
- Connectivity: There is a path in $R M$ connecting x_{1} and x_{2}.

If such a roadmap exists, then a free path from $x_{\text {start }}$ to $x_{\text {goal }}$ can be constructed from these three sub-paths, and the path planning problem can be reduced to finding the three sub-paths.

RoadMap Path Planning

1. Build the roadmap
a) nodes are points in the free space or its boundary
b) two nodes are connected by an edge if there is a free path between them
2. Connect start end goal points to the road map at point x_{1} and x_{2}, respectively
3. Find a path on the roadmap between x_{1} and x_{2}

The result is a path from start to goal

Shortest, But Possibly Dangerous Paths

The Visibility Graph

Visibility Graph methods

- Defined for polygonal obstacles
- Nodes correspond to vertices of obstacles
- Nodes are connected if
- they are connected by an edge on an obstacle

OR

- the line segment joining them is in free space

- If there is there a path, then the shortest path is in the visibility graph
- If we include the start and goal nodes, they are automatically connected
- Algorithms for constructing them can be efficient
$>O\left(n^{3}\right)$ brute force (i.e., naïve)
$>O\left(n^{2} \log n\right)$ if clever

The Visibility Graph in Action (Part 1)

- First, draw lines of sight from the start and goal to all "visible" vertices and corners of the world.

$$
e_{i j} \neq \emptyset \Longleftrightarrow s v_{i}+(1-s) v_{j} \in \operatorname{cl}\left(\mathcal{Q}_{\mathrm{free}}\right) \quad \forall s \in(0,1)
$$

The Visibility Graph in Action (Part 2)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

$$
e_{i j} \neq \emptyset \Longleftrightarrow s v_{i}+(1-s) v_{j} \in \operatorname{cl}\left(\mathcal{Q}_{\mathrm{free}}\right) \quad \forall s \in(0,1)
$$

The Visibility Graph in Action (Part 3)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

$$
e_{i j} \neq \emptyset \Longleftrightarrow s v_{i}+(1-s) v_{j} \in \operatorname{cl}\left(\mathcal{Q}_{\mathrm{free}}\right) \quad \forall s \in(0,1)
$$

The Visibility Graph in Action (Part 4)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

$$
e_{i j} \neq \emptyset \Longleftrightarrow s v_{i}+(1-s) v_{j} \in \operatorname{cl}\left(\mathcal{Q}_{\mathrm{free}}\right) \quad \forall s \in(0,1)
$$

The Visibility Graph (Done)

- Repeat until you're done.
- If there are n vertices, then there are $O\left(n^{2}\right)$ edges in the visibility graph - this is a bound, not the exact number of edges.

Reduced Visibility Graphs

- The current graph as too many edges
- lines to concave vertices
- lines that "head into" the object
- A reduced visibility graph consists of
- Vertices that are convex
- Edges that are "tangent" (i.e. do not head into the object at either endpoint)

Viaibility Grapb

Raduced Vialbility Graph

interestingly, this all only works in \mathfrak{R}^{2}

A Sweepline Algorithm:

Initially:

calculate the angle α_{i} of segment $v-v_{i}$ and sort vertices by this creating list E
create a list of edges that intersect the horizontal
from v sorted by intersection distance

For each α_{i}

if v_{i} is visible to v then add $v-v_{i}$ to graph
if v_{i} is the "beginning" of an edge E, insert E in S
if v_{i} is the "end" of and edge E, remove E from S

$$
\begin{gathered}
\mathcal{E}=\left\{\alpha_{3}, \alpha_{7}, \alpha_{4}, \alpha_{8}, \alpha_{1}, \alpha_{5}, \alpha_{2}, \alpha_{6}\right\} \\
\left(v, v_{4}\right),\left(v, v_{8}\right),-\overline{\text { and }}\left(v, v_{1}\right)
\end{gathered}
$$

The Sweepine Algorithm

1: For each vertex v_{i}, calculate α_{i}, the angle from the horizontal axis to the line segment $\overline{v v_{i}}$.
2: Create the vertex list \mathcal{E}, containing the α_{i} 's sorted in increasing order. $O(n \log n)$
3: Create the active list \mathcal{S}, containing the sorted list of edges that intersect the $O(n \log n)$ horizontal half-line emanating from v.
4: for all α_{i} do $\quad O(n \log n) \quad n$ times (once for each vertex)
5: if v_{i} is visible to v then
6: \quad Add the edge $\left(v, v_{i}\right)$ to the visibility graph.
7: end if
8: \quad if v_{i} is the beginning of an edge, E, notin \mathcal{S} then
9: \quad Insert the E into \mathcal{S}.
10: end if
11: if v_{i} is the end of an edge in sthen
12: \quad Delete the edge from \mathcal{S}.
13: end if
14: end for
If the line segment $\overline{v v_{i}}$ does not intersect the closest edge in

\mathcal{S}, and if l does not lie between the two edges incident on v then v_{i} is visible from v.

Analysis: For a vertex, $n \log n$ to create initial list, $\log n$ for each α_{i} Overall: $n \log (n)$ (or $n^{2} \log (n)$ for all n vertices

Algorithm:

Initially:
calculate the angle α_{i} of segment $v-v_{i}$ and sort vertices by this creating list E create a list of edges that intersect the horizontal from v sorted by intersection distance

For each α_{i}

if v_{i} is visible to v then add $v-v_{i}$ to graph if v_{i} is the "beginning" of an edge E, insert E in S if v_{i} is the "end" of and edge E, remove E from S

$$
\begin{aligned}
& \text { eta } \\
& \text { Ete } E_{4} \text { from } \mathcal{S} \text {. } \\
& \text { ete } E_{8} \text { from } \mathcal{S} \text {. } \\
& \text { y graph } \mathcal{S} \text {. } \\
& \text { y graph } \\
& \hline
\end{aligned}
$$

Vertex	New \mathcal{S}	Actions
Initialization	$\left\{E_{4}, E_{2}, E_{8}, E_{6}\right\}$	Sort edges intersecting horizontal half-line
α_{3}	$\left\{E_{4}, E_{3}, E_{8}, E_{6}\right\}$	Delete E_{2} from \mathcal{S}. Add E_{3} to \mathcal{S}.
α_{7}	$\left\{E_{4}, E_{3}, E_{8}, E_{7}\right\}$	Delete E_{6} from \mathcal{S}. Add E_{7} to \mathcal{S}.
α_{4}	$\left\{E_{8}, E_{7}\right\}$	Delete E_{3} from \mathcal{S}. Delete E_{4} from \mathcal{S}. ADD $\left(v, v_{4}\right)$ to visibility graph
α_{8}	$\}$	Delete E_{7} from \mathcal{S}. Delete E_{8} from \mathcal{S}. ADD $\left(v, v_{8}\right)$ to visibility graph
α_{1}	$\left\{E_{1}, E_{4}\right\}$	Add E_{4} to \mathcal{S}. Add E_{1} to \mathcal{S}. ADD $\left(v, v_{1}\right)$ to visibility graph
α_{5}	$\left\{E_{4}, E_{1}, E_{8}, E_{5}\right\}$	Add E_{8} to \mathcal{S}. Add E_{5} to \mathcal{S}.
α_{2}	$\left\{E_{4}, E_{2}, E_{8}, E_{5}\right\}$	Delete E_{1} from \mathcal{S}. Add E_{2} to.
α_{6}	$\left\{E_{4}, E_{2}, E_{8}, E_{6}\right\}$	Delete E_{5} from \mathcal{S}. Add E_{6} to \mathcal{S}.
Termination		

Safe Paths that Have Large Clearance to Obstacles

The Generalized Voronoi Diagram

Voronoi Diagrams

Generalized Voronoi Diagrams

Beyond Points: Basic Definitions

$d_{i}(x)$ is the distance from the point x to the nearest point that belongs to an obstacle.

$$
\nabla \mathrm{d}_{\mathrm{i}}(\mathrm{x})=\frac{x-c}{\|x-c\|}
$$

we'll use this later...

$$
\mathrm{d}_{\mathrm{i}}(\mathrm{x})=\min _{\mathrm{c} \in \partial C_{i}} \mathrm{~d}(\mathrm{x}, \mathrm{c})
$$

Two-Equidistant

A Two-equidistant surface is the set of points equally distant to two obstacles.

More Frugal Definition

Two-Equidistant Face

$$
F_{i j}=\left\{\mathrm{x} \in S_{i j} \mid d_{i}(x)=d_{j}(x)<d_{k}(x), \text { for all } h \neq i, j\right.
$$

General Voronoi Diagram

$\mathrm{GVD}=\bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{i j}$

What about concave obstacles?

What about concave obstacles?

What about concave obstacles?

Two-Equidistant

- Two-equidistant surface

$$
S_{i j}=\left\{x \in Q_{\text {ricu }}: d_{i}(x)-d_{j}(x)=0\right\}
$$

- Two-equidistant surjective surface

$$
\begin{aligned}
S S_{i j} & =\left\{x \in S_{i j}: \nabla d_{i}(x) \neq \nabla d_{j}(x)\right\} \\
F_{i j} & =\left\{x \in S S_{i j}: d_{i}(x) \leq d_{h}(x), \forall h \neq i\right\}
\end{aligned}
$$

$$
\mathrm{GVD}=\bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{i j}
$$

Accessibility (in the Plane)

Follow the gradient of the distance function until another obstacle is equally close.

A Discrete Version of the Generalized Voronoi Diagram

- use a discrete version of space and work from there
- The Brushfire algorithm is one way to do this
- need to define a grid on space
- need to define connectivity (4/8)
- obstacles start with a 1 in grid; free space is zero

n 1	n 2	n 3
n 4	n 5	n 6
n 7	n 8	n 9

4

8

Brushfire Algorithm

- Initially: create a queue L of pixels on the boundary of all obstacles, set $d(t)=0$ for each non-boundary grid cell t
- While $L \neq \emptyset$
- pop the top element t of L
- if $d(t)=0$
- $d(t) \leftarrow 1+\min _{t^{\prime} \in N(t), d\left(t^{\prime}\right) \neq 0} d\left(t^{\prime}\right)$
- $L \leftarrow L \cup\left\{t^{\prime} \in N(t) \mid d(t)=0\right\} \quad / *$ add unvisited neighbors to L

The result is a distance map d where each cell holds the minimum distance to an obstacle.

Local maxima of d define the cells at which "wave fronts" cross, and these lie on the discrete Generalized Voronoi Diagram.

Brushfire example

Note that the curves here are not at all perfect...

Path Planning for Large Empty Spaces

Cell Decomposition

Cell Decomposition

- Don't explicitly build a 1-D Roadmap.
- The "Roadmap" corresponds to the adjacency graph of the cellular decomposition.
- Nodes in the adjacency graph correspond to free cells.
- Arcs in the adjacency graph connect nodes that correspond to adjacent cells.

Definition

Exact Cellular Decomposition

- ν_{i} is a cell
- $\operatorname{int}\left(\nu_{i}\right) \cap \operatorname{int}\left(\nu_{j}\right)=\emptyset$ if and only if $i \neq j$
- Qriee $\cap\left(\operatorname{cl}\left(\nu_{i}\right) \cap \operatorname{cl}\left(\nu_{j}\right)\right) \neq \emptyset$ if ν_{i} and ν_{j} are adjacent cells
- $\mathrm{Q}_{\mathrm{iree}}=\mathrm{U}_{i}\left(\nu_{i}\right)$

Adjacency Graph

- Node correspond to a cell
- Edge connects nodes of adjacent cells
- Two cells are adjacent if they share a common boundary

Path Planning

- Path Planning in two steps:
- Planner determines cells that contain the start and goal
- Planner searches for a path within adjacency graph

Trapezoidal Decomposition

Trapezoidal Decomposition Path

Implementation

- Input is vertices and edges
- Sort n vertices O(n logn)
- Determine vertical extensions
- For each vertex, intersect vertical line with each edge O(n) time
- Total $O\left(\mathrm{n}^{2}\right)$ time

Sweep line approach

Sweep a line through the space stopping at vertices which are often called events

Maintain a list L of the current edges the slice intersects
Determining the intersection of slice with L requires $O(n)$ time but with an efficient data structure like a balanced tree, perhaps $O(\log n)$

Really, determine between which two edges the vertex or event lies These edges are $e_{\text {LOWER }}$ and $e_{\text {UPPER }}$

So, really maintaining L takes $O(n \log n)-\log n$ for insertions, n for vertices

Events

"other" vertex of $e_{\text {lower }}$ has a y-coordinate lower than the "other" vertex of $e_{\text {upper }}$

Out

$e_{\text {lower }}$ and $e_{\text {upper }}$ are both to the left of the sweep line

- delete $e_{\text {lower }}$ and $e_{\text {upper }}$ from the list
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$ (..., $\left.e_{\text {LOWER }}, e_{\text {UPPER }}, \ldots\right)$

In

$e_{\text {lower }}$ and $e_{\text {upper }}$ are both to the right of the sweep line

- insert $e_{\text {lower }}$ and $e_{\text {upper }}$ into the list
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {UPPER }}, \ldots\right) \rightarrow\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$

Middle

$e_{\text {lower }}$ is to the left and $e_{\text {upper }}$ is to the right of the sweep line

- delete $e_{\text {lower }}$ from the list and insert $e_{\text {upper }}$
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {UPPER }}, \ldots\right)$
$\left(\ldots, e_{\text {LOWER }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$
$e_{\text {lower }}$ is to the right and $e_{\text {upper }}$ is to the left of the sweep line
- delete $e_{\text {upper }}$ from the list and insert $e_{\text {lower }}$
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$
$\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {UPPER }}, \ldots\right)$

Example

$$
L: \emptyset \rightarrow\left\{e_{8}, e_{13}\right\}
$$

$e_{\text {lower }}$ and $e_{\text {upper }}$ are both to the right of the sweep line

- insert $e_{\text {lower }}$ and $e_{\text {upper }}$ into the list
$-\left(\ldots, e_{\mathrm{LOWER}}, e_{\mathrm{UPPER}}, \ldots\right) \rightarrow\left(\ldots, e_{\mathrm{LOWER}}, e_{\text {lower }}, e_{\text {upper }}, e_{\mathrm{UPPER}}, \ldots\right)$

Example

Each insertion or deletion requires $O(\log n)$ time

$e_{\text {lower }}$ and $e_{\text {upper }}$ are both to the right of the sweep line

- insert $e_{\text {lower }}$ and $e_{\text {upper }}$ into the list
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {UPPER }}, \ldots\right) \rightarrow\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$

Example

$$
L:\left\{e_{8}, e_{0}, e_{3}, e_{13}\right\} \rightarrow\left\{e_{8}, e_{0}, e_{3}, e_{12}\right\}
$$

$e_{\text {lower }}$ is to the left and $e_{\text {upper }}$ is to the right of the sweep line

- delete $e_{\text {lower }}$ from the list and insert $e_{\text {upper }}$
$-\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {UPPER }}, \ldots\right)$
$\left(\ldots, e_{\text {LOWER }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$

Example

$\left\{e_{9}, e_{1}, e_{2}, e_{6}, e_{5}, e_{12}\right\} \rightarrow\left\{e_{9}, e_{6}, e_{5}, e_{12}\right\}$
delete $e_{\text {lower }}$ and $e_{\text {upper }}$ from the list
$\left(\ldots, e_{\text {LOWER }}, e_{\text {lower }}, e_{\text {upper }}, e_{\text {UPPER }}, \ldots\right)$
(..., $\left.e_{\text {LOWER }}, e_{\text {UPPER }}, \ldots\right)$

Trapezoidal Decomposition

