CS 3630

Differential Drive
Robots

Mobile Robots

* There are many kinds of wheeled mobile robots.
* In this class, we primarily study differential drive robots.
* The Duckiebot is a differential drive robot.

Mobile Robot Kinematics

* Relationship between input commands (e.g., wheel velocity) and pose of
the robot, not considering forces. If the wheels turn at a certain rate, what
is the resulting robot motion?

 No direct way to measure pose (unless we sensorize the environment), but
we can integrate velocity (odometry) to obtain a good estimate.

TELEVISION
L~ CAMERA |

CASTER
WHEEL

More Modern AGVs

Differential Drive Robots

Center of
Rotation ¥

- Center of

Robot

RGB-D

camera
tr/ Laptop tray
Stereo o
microphones ‘. _________ Expansion panel
Speaker Lifting torso

Parallel gripper

7 DoF arm e

: }
LEDs stripes.__ i - A__ speaker
! 1== Dock station
Laser e j contactor
range-finder ' =
Service
. panel

Two wheels with a common axis, and that can spin independently

Differential Drive Robots

bx]

Wheel radius is r

Baseline distance between wheels is L

The configuration of the robot can be specified by
q=(x,y,0)

At any moment in time, the instantaneous velocity
of the robot is given by

Uy .
v(t) = v, | 0 =w

This robot cannot move instantaneously in
the direction perpendicular to the forward
velocity: v, = 0

NOTE: These velocities are specified w.r.t. the robot’s coordinate frame.

Differential Drive Robots # = specd ofwheelrotation

When both wheels turn with the same velocity and same

direction, we have pure forward motion:
Uy : Uy

(ISR= ’ ¢L=_

r r

When the wheels turn in opposite directions with the

same velocity, we have pure rotation:

: wlL : wl
br = ¢ =

2r’ LToor

Combining the two (velocities are linear, so superposition applies) we obtain:

wL v, : wL v,

gbR:Z‘r-I_r' gbL:_Zr-l_r

Differential Drive Robots

VI

ro . .
7 (Pr—)]

bx]

We have equations that define wheel angular velocity in

terms of linear and angular velocity of the robot:

wL v, : wL v,

¢R:2r+r' ¢L:_2r+r

A bit of algebra gives the desired relationship between
input (wheel velocity) and output (linear and angular
velocity of the robot):

ro. L ro. o
E(¢R+¢L)_vx» Z(‘PR—Q[)L)—(U—H

Motion relative to the world frame

We transform the robot velocity to world coordinates using
our usual coordinate transformation:

- . .
. —(¢g +
00 — [COS 6 —sinf] [Ux] _ [Ux cos 6 Uy 2 (@r + ¢1)
sinf cos@l1LO v, Sin @ lvy] =|. 0
a) ° .
, 7 (Pr— D),
0 =w
We typically think of the robot as a device with
linear and angular velocity input, rather than
We typically write the equations of motion as: think about wheel RMPs.
X v, cos 6 X cos6 0]
Y| =|v,sin6 or as yl=]|sin6 0 [a)]
0 w 0 0 1

CS 3630
Motion Planning
in the Plane

L53%55%%0%

With lots of slides and ideas E#*
from:
Howie Choset
Greg Hager
Zack Dodds
Nancy Amato

Mobile Robots

= In general, motion planning is intractable.
= For certain special cases, efficient algorithms exist.

= Mobile robots that move in the plane are much
simpler than robot arms, mobile manipulators,
humanoid robots, etc.

= The main simplifying property is that we can often
treat path planning as a two-dimensional problem
for a point moving in the plane, x € R2.

= [oday --- path planning algorithms for such robots.

Roadmap methods

Capture the connectivity of the free space by a
graph or network of paths.

akep sgou‘n station| ..
2 v
_ Vvv) Balrhiord B
\ -b
.9 e Natre
ol \

L7 ;Edga q
Val ybrook R ﬁ‘*_ { o 0 Pl
onsbur —- anwdengo \ ;terson\tnll I };;ua't:_f%
A & |erce Dal
\?.MJ I el LI n@";ﬂ ﬁ r.- T;f:fd ale & A
© 1999 MaDQuesi com, Inc.; ©@ 1999 Navnatnn Technobakls™ th il

Roadmaps

A roadmap, RM, is the union of one-dimensional curves such that
for all Xs¢qrt @and Xg404; that can be connected by a collision- free
path:

m Accessibility: There is a collision-free path connecting Xt 4+ tO
some point x; € RM.

» Departability: There is a collision-free path connecting x,,4; to
some point x, € RM.

m Connectivity: There is a path in RM connecting x; and x,.

If such a roadmap exists, then a free path from Xg¢ gyt t0 Xgg1C0aN

be constructed from these three sub-paths, and the path planning
problem can be reduced to finding the three sub-paths.

RoadMap Path Planning

1. Build the roadmap
a) nodes are points in the free space or its boundary

b) two nodes are connected by an edge if there is a free path
between them

2. Connect start end goal points to the road map
at point x; and x, , respectively

3. Find a path on the roadmap between x; and x,

The result is a path from start to goal

Shortest, But Possibly Dangerous Paths

The Visibility Graph

Visibility Graph methods

Defined for polygonal obstacles
Nodes correspond to vertices
of obstacles k

Nodes are connected if
m they are connected by an
!

edge on an obstacle
OR \‘
= theline segment joining g °%s.
them is in free space Mg e
I
!

/

If there is there a path, then the shortest path is in the visibility graph
If we include the start and goal nodes, they are automatically connected

Algorithms for constructing them can be efficient

>0 (n3) brute force (i.e., naive)
>0(n*logn) if clever

The Visibility Graph in Action (Part 1)

m First, draw lines of sight from the start and goal to all “visible”
vertices and corners of the world.

e;j 70 — sv; + (1 —s)v; €cl(Qpee) s € (0,1)

goal

N
)

The Visibility Graph in Action (Part 2)

= Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

eij 0 = svi+ (1 8)v; € cl(Qpee) ¥s € (0,1)

The Visibility Graph in Action (Part 3)

= Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

eij 70 = svi+ (1 - s)v; € cl(Qpee) ¥s € (0,1)

The Visibility Graph in Action (Part 4)

= Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

eij 70 = svi+ (1 s)v; € cl(Qpee) ¥s € (0.1)

The Visibility Graph (Done)

s Repeat until you’re done.

= If there are n vertices, then there are 0(n?) edges in the
visibility graph — this is a bound, not the exact number of

edges.

Reduced Visibility Graphs

= The current graph as too many edges
« lines to concave vertices
» lines that “head into” the object

= A reduced visibility graph consists of
= Vertices that are convex

»« Edges that are “tangent” (i.e. do not head into the object at either
endpoint)

Visibility Craph Reduced Visibility Craph

interestingly, this all only works in %2

A Sweepline Algorithm:

Initially:
calculate the angle o, of segment v-v; and sort
vertices by this creating list E

Carnegie Mellon

create a list of edges that intersect the horizontal

from v sorted by intersection distance
For each o
if v; is visible to v then add v-v, to graph

if v, is the “beginning” of an edge E, insert Ein S
if v; is the “end” of and edge E, remove E from S

& = {OIS'OT-‘Q‘l‘OS‘-OI'QSvOQ?aG.‘ }

(v,v4), (v,v8), and (v, vq)

\:-

-l -

98 U9
ll &
ES

http://motionplanning.com choset@cs.cmu.edu

vy

Carnegie Mellon

The Sweeplme Algorithm

1: For each vertex v;, calculate «;, the angle from the horizontal axis to the O(n)
line segment 77y, ‘
2: Create the vertex list £, containing the «;’s gorted|in increasing order. O(nlogn)
3: Create the active list S, containing the [sorted|list of edges that intersect the O(nlogn)
horizontal half-line emanating from v.

4: for all o do ()(: n log) n times (once for each vertex)
5. if v; 18 visible to v then Oflogn)
6: Add the edge (v, v;) to the visibility graph. /

7. end if

8: if v; 18 the beginning of an edge, E.

0: Insert the £ into S.

10 end if
11: if v; 18 the end of an edge n
12: Delete the edge from S.

13: end if , , _ M ,
4 | f If the line segment 775 does not intersect the closest edge in
145 ena xor S, and if [does not lie between the two edges incident on v

then v; 1s visible from v

Analysis: For a vertex, n log n to create initial list, log n for each o,
Overall: n log (n) (or n? log (n) for all n vertices

http://motionplanning.com choset@cs.cmu.edu

Algorithm:

Initially:

calculate the angle o, of segment v-v; and sort
vertices by this creating list E

create a list of edges that intersect the horizontal
from v sorted by intersection distance

For each o,

if v, is visible to v then add v-v; to graph
if v, is the “beginning” of an edge E, insert E in S
if v; is the “end” of and edge E, remove E from S

(&

| Vertex | New S | Actions
Initialization | { £y, Eo. Es, Eg} | Sort edges intersecting horizontal half-line
o3 {E4, E3. Eg, Eg} | Delete E from S. Add E3 to S.
vy {Ey, Es. Eg, Ez} | Delete Eg from S. Add E; to S.
vy {Es. E7} Delete E5 from S. Delete Ey from S.
ADD (v, vy) to visibility graph
g {} Delete E» from S. Delete Eg from S.
ADD (v, vg) to visibility graph
e %1 {E. Ey} Add E4 to S. Add Fy to S.
ADD (v,v1) to visibility graph
(v, {E4 E,. FEs, E5} Add Eg to S. Add E to S.
o {Ey. By, Eg, Ex5} | Delete £y from S. Add Ej to S.
oG {Ey. Eo, Eg, Eg} | Delete Ex from S. Add Eg to S.
Termination

http://motionplanning.com choset@cs.cmu.edu

Carnegie Mellon

/

Uy Ug

& = {0'3,0'7,04,0‘3,Cll_.Os,O‘Q_.Q()', }

(v, v4), (‘l-‘,‘l’g), and (v,v1)

Safe Paths that Have Large Clearance
to Obstacles

The Generalized Voronoi Diagram

Voronoi Diagrams

Voronoi cell

Generalized Voronoi Diagrams

-t

Beyond Points: Basic Definitions

d;(x) is the distance from the point x to the
nearest point that belongs to an obstacle.

e Vdi = ——

||x —c|]

we’ll use this later...

d;(x) = cré%?i d(x, c)

Two-Equidistant

A Two-equidistant surface is the set of points equally
distant to two obstacles.

@

Sij = {x|d;(x) — d;(x) = 0|

More Frugal Definition

di(x') < di(x) = d;(x')

Q

X x' Ck

i O —

2 dy(x) = d;(x) < dy (%)

Two-Equidistant Face

Fi; ={x € §;; |d;i(x) = d;(x) < dy(x),forall h # i,j

General Voronoi Diagram

GVD :Ol OEJ

i=1 j=i+l

What about concave obstacles?

Q0; Q0;
= VS

QO; QO;

d

What about concave obstacles?

QO;

Vd .

QO;

7

vd,

VS

QO;

Wj/

vd,

QO;

What about concave obstacles?

QO;

Vd .

vd,

VS

vd

QO;

vd,

Wj/

vd,

QO

Two-Equidistant

n /Wo-equidistant surface

S, =X € Owe:d (x)—d ;(x) =0}

= [wo-equidistant surjective surface

85, ={x €S, :Vd,(x) #Vd (x)}

F,={xed8§;:d,(x)<d,(x),Vh#i}

n-1 n S
GVD:U UF,-,- y

i=1 j=i+l

Vd .

vd,

Accessibility (in the Plane)

-~
-~
-
-
-
- -
-
-~
G

Follow the gradient of the distance function until another
obstacle is equally close.

A Discrete Version of the
Generalized Voronoi Diagram

« use a discrete version of space and work from there

— The Brushfire algorithm is one way to do this
» need to define a grid on space
* need to define connectivity (4/8)
» obstacles start with a 1 in grid; free space is zero

nl n2 n3 nl n2 n3

n4 ns n6 n4 ns n6

n7 n8 n9

n7 n8 n9

Brushfire Algorithm

Initially: create a queue L of pixels on the boundary of all obstacles, set
d(t) = 0 for each non-boundary grid cell t

e WhileL # @
— pop the top element t of L
— ifd(t) = 0

e d(t 1 ' d(t’
(t) < +t’EN(£r)l,ldr%t’)¢0 ()

e L LU{t' e N(t)|d(t) =0} /*add unvisited neighbors to L

The result is a distance map d where each cell holds the minimum distance to
an obstacle.

Local maxima of d define the cells at which “wave fronts” cross, and these lie
on the discrete Generalized Voronoi Diagram.

Brushfire example

A3

R 573 100 1) 00 £ 00 3o)) 400)) R0
» Teq
P als

N 7T

T Y TV

y y v

7 \‘ T

Ty 4 oy

'y

TETr r T
ks -

ol 3 /f T

‘

7
T
T
GiEalal JFaFa T STaiad o
r by TErXTT EnTiYT T T
A
RS- - T
oy o] S S e d s o
alaraiars S fa e fa i b o o

A433933333533222323

PER EEEEEY

3979323202132

P eRERER

Note that the curves
here are not at all

perfect...

bl R SRR SR S) S 2
B3 1 B 4 5 10 400 400 400))
N i
NG ool kolo ko ot
atl e O YO0 O T fOTO PO

Y A
e NG == e i -
yrra, i 3= 4
: = \\ s
1% R0y
!
- o = b
o SRS oy
et s Ry :
N
da ATy ey
it I et e oo Mo
Ty hay Yt ok o)
sk .
B e el i)
trr berdory Sorrry iy vty oy
iat
oy
VIR0 01 0 YA pa e
r bk prrrrr oo et ey
{l y
oy i i b e
o8 RAROR &
T T vy
i i ot s ot .. i 4

FAQ £ 101 0 1) 60 10 60 1o) 9 400 40 [0 R
SO BRI RERR S S
NGl i R T R AT
v s O FOTRT OO 7O .Y T

s 7 3
yiHer i Ay oy by
3 o P dictal TV
sttt abal e v o Ty
Fit et Ak o o Ty
b ieer Ly o S
darad = VT RO O TV
da vy ey i O RO as

S e it i Ereior
uu A N e

S \ ia
il a annrii i)

Ay by dvr bk ey ey ey o o
3 YR
) o

rf/-‘z..‘l.‘ S la il Faaaid ey
v bk ey ey v ey ey e
dal

T T

..liv‘v. TR TR PRI ST TN
Frorerprisriorriorerorerensrener

Path Planning for Large Empty Spaces

Cell Decomposition

Cell Decomposition

= Don't explicitly build a 1-D Roadmap.

= The "Roadmap” corresponds to the adjacency
graph of the cellular decomposition.

= Nodes in the adjacency graph correspond to free
cells.

= Arcs in the adjacency graph connect nodes that
correspond to adjacent cells.

Definition

Exact Cellular Decomposition
e 1; is a cell
e int(v;) Nint(v;) = 0 if and only if ¢ # j
« Qree N(cl(v;) Ncl(v})) # O if v; and v; are adjacent cells

® Qfree = Uz(’/z)

Adjacency Graph

= Node correspond to a cell

» Edge connects nodes of adjacent cells
= Two cells are adjacentif they share a common boundary

Path Planning

= Path Planning in two steps:
» Planner determines cells that contain the start and goal
» Planner searches for a path within adjacency graph

o
ositio
idal Decomp
ezol
Trap

U11
/ i v: U10
Us
U3 . .
Vo y
U13
Uy /
Usg

Trapezoidal Decomposition

Trapezoidal Decomposition

€12

I
I
|
—

sition

Trapezoidal Decompo

o
ositio
idal Decomp
ezol
Trap

C4

C2

C1

C3

C5

Cé

&

C7

€9

C11

°10

C12

C14

C13

C15

tion
osItio
idal Decw
ezo
Trap

C1

Ceé

€9

C7
8

C14
Cs \
3

C15,
C1
C1
€10

Ty

g

1
C12

Trapezoidal Decomposition Path

Implementation

= Input is vertices and edges
= Sort n vertices O(n logn)

s Determine vertical extensions
» For each verte, intersect vertical line with each edge -
O(n) time
= Total O(n?2) time

Sweep line approach

Sweep a line through the space stopping at vertices which are often
called events

Maintain a list L of the current edges the slice intersects

Determining the intersection of slice with L requires O(n) time but with
an efficient data structure like a balanced tree, perhaps O(log n)

Really, determine between which two edges the vertex or event lies
These edges are ¢Lower and eypper

So, really maintaining L takes O(n log n) — log n for insertions, n for vertices

Events

“other”™ vertex of €lower has a y-coordinate lower than the “other” vertex of eypper

Cupper Cupper

v ?
Elower
Elower

Out

€lower AN €ypper are both to the left of the sweep line

— delete ejgyer and e from the list

upper

~ (s ELOWER: €lower €uppers CUPPER: - -+)
(..., ELOWER,: €UPPER. -.-)

In

Clower ANd €ypper are both to the right of the sweep line

— Insert €lower and eypper Into the list

~ (. 6LOWER: €UPPER: ---) — (.-« CLOWER: €lower €upper+ CUPPER; -

€lower

Cupper €upper

Elawer

Middle

Elower 15 tO the left and e,y 1s to the right of the sweep line

— delete €)gyer from the list and insert eypper

~ (... (LOWER, €lower, €UPPER, ---)
(.... CLOWER: €uppers €UPPER.: -+)

Clower 15 tO the right and eypper 1s to the left of the sweep line

— delete eypper from the list and insert ejgyer

o (- €LOWER: €uppers UPPER -)
(..., ELLOWER: €lowers €UPPER. ---)

Example

L:0— {es, ez}

Clower ANd €ypper are both to the right of the sweep line

— Insert €lgwer and eypper INto the list

~ (s ELOWER: €UPPER: ---) — (s ELOWER : €lower s €upper: CUPPER; -+)

Example

Each insertion or deletion
requires O (logn) time

€13

L : {es.e3} — {es,en.e3.€13}

Clower ANd €ypper are both to the right of the sweep line

- Insert €lgwer and eypper Into the list

(. ELOWER: €UPPER: ---) — (.--s ELOWER €lower: €upper: CUPPER:: ---)

Example

€13

L : {es.en.e3, €13} — {es, en,e3,€12}

Elower 15 to the left and e, ;. 1s to the right of the sweep line

— delete €y from the list and insert eypper

~ (... (LOWER. €lower, €UPPER. ---
(..., .LLOWER, €uppers €CUPPER. ---)

Example

{eo.e1.e2.e6, €5, €12} — {ea,e6.e5.12}.

delete ejgye, and e, from the list

(s ELOWER: €lower: €uppers €UPPER:)
(..., ELOWER, €UPPER, ---)

tion
osItio
idal Decw
ezo
Trap

C1

Ceé

€9

C7
8

C14
Cs \
3

C15,
C1
C1
€10

Ty

g

1
C12

