Differential Drive Robots
Mobile Robots

• There are many kinds of wheeled mobile robots.
• In this class, we primarily study *differential drive robots*.
• The Duckiebot is a differential drive robot.

Mobile Robot Kinematics

• Relationship between input commands (e.g., wheel velocity) and pose of the robot, not considering forces. *If the wheels turn at a certain rate, what is the resulting robot motion?*
• No direct way to measure pose (unless we sensorize the environment), but we can integrate velocity (odometry) to obtain a good estimate.
More Modern AGVs
Differential Drive Robots

Two wheels with a common axis, and that can spin independently
Differential Drive Robots

The configuration of the robot can be specified by
\[q = (x, y, \theta) \]

At any moment in time, the instantaneous velocity of the robot is given by
\[v(t) = \begin{bmatrix} v_x \\ v_y \end{bmatrix}, \quad \dot{\theta} = \omega \]

This robot cannot move instantaneously in the direction perpendicular to the forward velocity: \(v_y = 0 \)

Wheel radius is \(r \)

Baseline distance between wheels is \(L \)

NOTE: These velocities are specified w.r.t. the robot’s coordinate frame.
When both wheels turn with the same velocity and same direction, we have pure forward motion:

\[\dot{\phi}_R = \frac{v_x}{r}, \quad \dot{\phi}_L = \frac{v_x}{r} \]

When the wheels turn in opposite directions with the same velocity, we have pure rotation:

\[\dot{\phi}_R = \frac{\omega L}{2r}, \quad \dot{\phi}_L = -\frac{\omega L}{2r} \]

Combining the two (velocities are linear, so superposition applies) we obtain:

\[\dot{\phi}_R = \frac{\omega L}{2r} + \frac{v_x}{r}, \quad \dot{\phi}_L = -\frac{\omega L}{2r} + \frac{v_x}{r} \]
We have equations that define wheel angular velocity in terms of linear and angular velocity of the robot:

\[
\begin{align*}
\dot{\phi}_R &= \frac{\omega L}{2r} + \frac{v_x}{r}, \\
\dot{\phi}_L &= -\frac{\omega L}{2r} + \frac{v_x}{r}
\end{align*}
\]

A bit of algebra gives the desired relationship between input (wheel velocity) and output (linear and angular velocity of the robot):

\[
\begin{align*}
\frac{r}{2}(\dot{\phi}_R + \dot{\phi}_L) &= v_x, \\
\frac{r}{L}(\dot{\phi}_R - \dot{\phi}_L) &= \omega = \dot{\theta}
\end{align*}
\]
Motion relative to the world frame

We transform the robot velocity to world coordinates using our usual coordinate transformation:

\[
\mathbf{v}^0 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} v_x \\ 0 \end{bmatrix} = \begin{bmatrix} v_x \cos \theta \\ v_x \sin \theta \end{bmatrix}
\]

\[
\dot{\theta} = \omega
\]

We typically write the equations of motion as:

\[
\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v_x \cos \theta \\ v_x \sin \theta \\ \omega \end{bmatrix} \quad \text{or as} \quad \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}
\]

We typically think of the robot as a device with linear and angular velocity input, rather than think about wheel RMPs.
CS 3630
Motion Planning in the Plane

With lots of slides and ideas from:

Howie Choset
Greg Hager
Zack Dodds
Nancy Amato
Mobile Robots

- In general, motion planning is intractable.
- For certain special cases, efficient algorithms exist.
- Mobile robots that move in the plane are much simpler than robot arms, mobile manipulators, humanoid robots, etc.
- The main simplifying property is that we can often treat path planning as a two-dimensional problem for a point moving in the plane, \(x \in \mathbb{R}^2 \).
- Today --- path planning algorithms for such robots.
Roadmap methods

Capture the connectivity of the free space by a graph or network of paths.
Roadmaps

A roadmap, RM, is the union of one-dimensional curves such that for all x_{start} and x_{goal} that can be connected by a collision-free path:

- **Accessibility**: There is a collision-free path connecting x_{start} to some point $x_1 \in RM$.
- **Departability**: There is a collision-free path connecting x_{goal} to some point $x_2 \in RM$.
- **Connectivity**: There is a path in RM connecting x_1 and x_2.

If such a roadmap exists, then a free path from x_{start} to x_{goal} can be constructed from these three sub-paths, and the path planning problem can be reduced to finding the three sub-paths.
RoadMap Path Planning

1. Build the roadmap
 a) nodes are points in the free space or its boundary
 b) two nodes are connected by an edge if there is a free path between them

2. Connect start end goal points to the road map at point x_1 and x_2, respectively

3. Find a path on the roadmap between x_1 and x_2

The result is a path from start to goal
Shortest, But Possibly Dangerous Paths

The Visibility Graph
Visibility Graph methods

- Defined for polygonal obstacles
- Nodes correspond to vertices of obstacles
- Nodes are connected if
 - they are connected by an edge on an obstacle
 - the line segment joining them is in free space

If there is a path, then the *shortest* path is in the visibility graph.
If we include the start and goal nodes, they are automatically connected.
Algorithms for constructing them can be efficient
- $O(n^3)$ brute force (i.e., naïve)
- $O(n^2 \log n)$ if clever
The Visibility Graph in Action (Part 1)

- First, draw lines of sight from the start and goal to all "visible" vertices and corners of the world.

\[e_{ij} \neq \emptyset \iff sv_i + (1 - s)v_j \in \text{cl}(Q_{\text{free}}) \quad \forall s \in (0, 1) \]
Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

\[e_{ij} \neq \emptyset \iff s v_i + (1 - s) v_j \in \text{cl}(Q_{\text{free}}) \quad \forall s \in (0, 1) \]
The Visibility Graph in Action (Part 3)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

\[e_{ij} \neq \emptyset \iff sv_i + (1 - s)v_j \in \text{cl}(Q_{\text{free}}) \quad \forall s \in (0, 1) \]
The Visibility Graph in Action (Part 4)

- Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

\[e_{ij} \neq \emptyset \iff sv_i + (1-s)v_j \in \text{cl}(Q_{\text{free}}) \quad \forall s \in (0, 1) \]
The Visibility Graph (Done)

- Repeat until you’re done.
- If there are \(n \) vertices, then there are \(O(n^2) \) edges in the visibility graph – this is a bound, not the exact number of edges.
Reduced Visibility Graphs

- The current graph has too many edges
 - lines to concave vertices
 - lines that "head into" the object

- A reduced visibility graph consists of
 - Vertices that are convex
 - Edges that are "tangent" (i.e. do not head into the object at either endpoint)

Interestingly, this all only works in \mathbb{R}^2
A Sweepline Algorithm:

Initially:
- calculate the angle α_i of segment $v-v_i$ and sort vertices by this creating list E
- create a list of edges that intersect the horizontal from v sorted by intersection distance

For each α_i
- if v_i is visible to v then add $v-v_i$ to graph
- if v_i is the “beginning” of an edge E, insert E in S
- if v_i is the “end” of an edge E, remove E from S
The Sweepline Algorithm

1: For each vertex v_i, calculate α_i, the angle from the horizontal axis to the line segment vv_i. $O(n)$
2: Create the vertex list E, containing the α_i’s sorted in increasing order. $O(n \log n)$
3: Create the active list S, containing the sorted list of edges that intersect the horizontal half-line emanating from v. $O(n \log n)$
4: for all α_i do $O(n \log n)$
5: if v_i is visible to v then $O(\log n)$
6: Add the edge (v, v_i) to the visibility graph.
7: end if
8: if v_i is the beginning of an edge, E, not in S then
9: Insert the E into S.
10: end if
11: if v_i is the end of an edge in S then
12: Delete the edge from S.
13: end if
14: end for

Analysis: For a vertex, $n \log n$ to create initial list, $\log n$ for each α_i Overall: $n \log n$ (or $n^2 \log n$) for all n vertices
Algorithm:

Initially:
- Calculate the angle α_i of segment v-v_i and sort vertices by this creating list E
- Create a list of edges that intersect the horizontal from v sorted by intersection distance

*For each α_i:
- If v_i is visible to v then add v-v_i to graph
- If v_i is the “beginning” of an edge E, insert E in S
- If v_i is the “end” of an edge E, remove E from S

<table>
<thead>
<tr>
<th>Vertex</th>
<th>New S</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>${E_4, E_2, E_8, E_6}$</td>
<td>Sort edges intersecting horizontal half-line</td>
</tr>
<tr>
<td>α_3</td>
<td>${E_4, E_3, E_8, E_6}$</td>
<td>Delete E_2 from S. Add E_3 to S.</td>
</tr>
<tr>
<td>α_7</td>
<td>${E_4, E_3, E_8, E_7}$</td>
<td>Delete E_6 from S. Add E_7 to S.</td>
</tr>
<tr>
<td>α_4</td>
<td>${E_8, E_7}$</td>
<td>Delete E_3 from S. Delete E_4 from S. Add (v, v_4) to visibility graph</td>
</tr>
<tr>
<td>α_8</td>
<td>${}$</td>
<td>Delete E_7 from S. Delete E_8 from S. Add (v, v_8) to visibility graph</td>
</tr>
<tr>
<td>α_1</td>
<td>${E_1, E_4}$</td>
<td>Add E_4 to S. Add E_1 to S. Add (v, v_1) to visibility graph</td>
</tr>
<tr>
<td>α_5</td>
<td>${E_4, E_1, E_8, E_5}$</td>
<td>Add E_8 to S. Add E_5 to S.</td>
</tr>
<tr>
<td>α_2</td>
<td>${E_4, E_2, E_8, E_5}$</td>
<td>Delete E_1 from S. Add E_2 to S.</td>
</tr>
<tr>
<td>α_6</td>
<td>${E_4, E_2, E_8, E_6}$</td>
<td>Delete E_5 from S. Add E_6 to S.</td>
</tr>
<tr>
<td>Termination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$E = \{\alpha_3, \alpha_7, \alpha_4, \alpha_8, \alpha_1, \alpha_5, \alpha_2, \alpha_6, \}$

$(v, v_4), (v, v_8)$, and (v, v_1)
Safe Paths that Have Large Clearance to Obstacles

The Generalized Voronoi Diagram
Voronoi Diagrams
Generalized Voronoi Diagrams
Beyond Points: Basic Definitions

d_i(x) is the distance from the point x to the nearest point that belongs to an obstacle.

\[\nabla d_i(x) = \frac{x - c}{||x - c||} \]

we’ll use this later...

\[d_i(x) = \min_{c \in \partial C_i} d(x, c) \]
Two-Equidistant

A Two-equidistant surface is the set of points equally distant to two obstacles.

\[S_{ij} = \{ x \mid d_i(x) - d_j(x) = 0 \} \]
More Frugal Definition

Two-Equidistant Face

\[F_{ij} = \{ x \in S_{ij} \mid d_i(x) = d_j(x) < d_k(x), \text{for all } h \neq i, j \]
General Voronoi Diagram

\[GVD = \bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{ij} \]
What about concave obstacles?
What about concave obstacles?
What about concave obstacles?
Two-Equidistant

- **Two-equidistant surface**

\[S_{ij} = \{ x \in Q_{\text{free}} : d_i(x) - d_j(x) = 0 \} \]

- **Two-equidistant surjective surface**

\[SS_{ij} = \{ x \in S_{ij} : \nabla d_i(x) \neq \nabla d_j(x) \} \]

\[F_{ij} = \{ x \in SS_{ij} : d_i(x) \leq d_h(x), \forall h \neq i \} \]

\[\text{GVD} = \bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^{n} F_{ij} \]

\[S_{ij} \]

\[C_i \]

\[C_j \]
Accessibility (in the Plane)

Follow the gradient of the distance function until another obstacle is equally close.
A Discrete Version of the Generalized Voronoi Diagram

• use a discrete version of space and work from there

 – The Brushfire algorithm is one way to do this
 • need to define a grid on space
 • need to define connectivity (4/8)
 • obstacles start with a 1 in grid; free space is zero
Brushfire Algorithm

- Initially: create a queue L of pixels on the boundary of all obstacles, set $d(t) = 0$ for each non-boundary grid cell t

- While $L \neq \emptyset$
 - pop the top element t of L
 - if $d(t) = 0$
 - $d(t) \leftarrow 1 + \min_{t' \in N(t), d(t') \neq 0} d(t')$
 - $L \leftarrow L \cup \{t' \in N(t) \mid d(t) = 0\}$ /* add unvisited neighbors to L

The result is a distance map d where each cell holds the minimum distance to an obstacle.

Local maxima of d define the cells at which “wave fronts” cross, and these lie on the discrete Generalized Voronoi Diagram.
Brushfire example

Note that the curves here are not at all perfect...
Path Planning for Large Empty Spaces

Cell Decomposition
Cell Decomposition

- Don’t explicitly build a 1-D Roadmap.
- The “Roadmap” corresponds to the adjacency graph of the cellular decomposition.
- Nodes in the adjacency graph correspond to free cells.
- Arcs in the adjacency graph connect nodes that correspond to adjacent cells.
Definition

Exact Cellular Decomposition

- ν_i is a cell
- $\text{int}(\nu_i) \cap \text{int}(\nu_j) = \emptyset$ if and only if $i \neq j$
- $Q_{\text{free}} \cap (\text{cl}(\nu_i) \cap \text{cl}(\nu_j)) \neq \emptyset$ if ν_i and ν_j are adjacent cells
- $Q_{\text{free}} = \bigcup_i (\nu_i)$
Adjacency Graph

- Node correspond to a cell
- Edge connects nodes of adjacent cells
- Two cells are adjacent if they share a common boundary
Path Planning

- Path Planning in two steps:
 - Planner determines cells that contain the start and goal
 - Planner searches for a path within adjacency graph
Trapezoidal Decomposition
Trapezoidal Decomposition
Trapezoidal Decomposition
Trapezoidal Decomposition
Trapezoidal Decomposition
Trapezoidal Decomposition Path
Implementation

- Input is vertices and edges
- Sort n vertices $O(n \log n)$
- Determine vertical extensions
 - For each vertex, intersect vertical line with each edge – $O(n)$ time
 - Total $O(n^2)$ time
Sweep line approach

Sweep a line through the space stopping at vertices which are often called events.

Maintain a list \(L \) of the current edges the slice intersects.

Determining the intersection of slice with \(L \) requires \(O(n) \) time but with an efficient data structure like a balanced tree, perhaps \(O(\log n) \).

Really, determine between which two edges the vertex or event lies. These edges are \(e_{\text{lower}} \) and \(e_{\text{upper}} \).

So, really maintaining \(L \) takes \(O(n \log n) \) – \(\log n \) for insertions, \(n \) for vertices.
Events

“other” vertex of \(e_{\text{lower}} \) has a \(y \)-coordinate lower than the “other” vertex of \(e_{\text{upper}} \)

Out

\(e_{\text{lower}} \) and \(e_{\text{upper}} \) are both to the left of the sweep line

- delete \(e_{\text{lower}} \) and \(e_{\text{upper}} \) from the list
- \((..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)
- \((..., e_{\text{LOWER}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)

In

\(e_{\text{lower}} \) and \(e_{\text{upper}} \) are both to the right of the sweep line

- insert \(e_{\text{lower}} \) and \(e_{\text{upper}} \) into the list
- \((..., e_{\text{LOWER}}, e_{\text{UPPER}}, ...) \rightarrow (..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)

Middle

\(e_{\text{lower}} \) is to the left and \(e_{\text{upper}} \) is to the right of the sweep line

- delete \(e_{\text{lower}} \) from the list and insert \(e_{\text{upper}} \)
- \((..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{UPPER}}, ...)
- \((..., e_{\text{LOWER}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)

\(e_{\text{lower}} \) is to the right and \(e_{\text{upper}} \) is to the left of the sweep line

- delete \(e_{\text{upper}} \) from the list and insert \(e_{\text{lower}} \)
- \((..., e_{\text{LOWER}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)
- \((..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{UPPER}}, ...)

Example

$L : \emptyset \rightarrow \{e_8, e_{13}\}$

e_{lower} and e_{upper} are both to the right of the sweep line

- insert e_{lower} and e_{upper} into the list
- $(..., e_{\text{LOWER}}, e_{\text{UPPER}}, ...) \rightarrow (..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)$
Example

Each insertion or deletion requires $O(\log n)$ time

$L : \{e_8, e_{13}\} \rightarrow \{e_8, e_0, e_3, e_{13}\}$

e_{lower} and e_{upper} are both to the right of the sweep line
- insert e_{lower} and e_{upper} into the list
- $(..., e_{\text{LOWER}}, e_{\text{UPPER}}, ...) \rightarrow (..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)$
Example

\[L : \{e_8, e_0, e_3, e_{13}\} \rightarrow \{e_8, e_0, e_3, e_{12}\} \]

\(e_{\text{lower}} \) is to the left and \(e_{\text{upper}} \) is to the right of the sweep line

\begin{itemize}
 \item delete \(e_{\text{lower}} \) from the list and insert \(e_{\text{upper}} \)
 \item \((..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{UPPER}}, ...\))
 \item \((..., e_{\text{LOWER}}, e_{\text{upper}}, e_{\text{UPPER}}, ...\))
\end{itemize}
Example

\[\{e_9, e_1, e_2, e_6, e_5, e_{12}\} \rightarrow \{e_9, e_6, e_5, e_{12}\}. \]

delete \(e_{\text{lower}} \) and \(e_{\text{upper}} \) from the list
\[
(..., e_{\text{LOWER}}, e_{\text{lower}}, e_{\text{upper}}, e_{\text{UPPER}}, ...)
\]
\[
(..., e_{\text{LOWER}}, e_{\text{UPPER}}, ...)
\]
Trapezoidal Decomposition