CS 3630

Pose in the Plane

Reference Frames

- Robotics is all about management of reference frames
- Perception is about estimation of reference frames
- Planning is how to move reference frames
- Control is the implementation of trajectories for reference frames
- The relation between references frames is essential to a successful
 system

Examples of the types of reference frames we're talking about

We rigidly attach coordinate frames to objects of interest. To specify the position and orientation of the object, we merely specify the position and orientation of the attached coordinate frame.

- The relationship between frames is often very simple to define, as in the case when two frames are related by the motion of a single joint/motor.
- For example the upper and lower leg of the dog robot are related by a single motor at the knee.

Today - we consider only the case of 2D reference frames, corresponding to mobile robots moving in the plane.

Specifying Orientation in the Plane

Given two coordinate frames with a common origin, how should we describe the orientation of Frame 1 w.r.t. Frame 0?

The obvious choice is to merely use the angle θ.
This isn't a great idea for two reasons:

- We have problems at $\theta=2 \pi-\epsilon$. For ϵ near 0 , we approach a discontinuity: for small change in ϵ, we can have a large change in θ.
- This approach does not generalize to rotations in three dimensions (and not all robots live in the plane).

Specifying Orientation in the Plane

Given two coordinate frames with a common origin, how should we describe the orientation of Frame 1 w.r.t. Frame 0?

$$
x_{1}^{0}=\left[\begin{array}{l}
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0}
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

Notation: x_{1}^{0} denotes the x-axis of Frame 1 , specified w.r.t Frame 0.

$$
y_{1}^{0}=\left[\begin{array}{l}
y_{1} \cdot x_{0} \\
y_{1} \cdot y_{0}
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right] \quad \begin{aligned}
& \text { We obtain } y_{1}^{0} \text { in the } \\
& \text { same way. }
\end{aligned}
$$

Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a rotation matrix: $\quad R_{1}^{0}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
All rotation matrices have certain properties:

1. The two columns are each unit vectors.
2. The two columns are orthogonal, i.e., $c_{1} \cdot c_{2}=0$.

$$
\text { For such matrices } R^{-1}=R^{T}
$$

3. $\operatorname{det} R=+1$
$>$ The first two properties imply that the matrix R is orthogonal.
$>$ The third property implies that the matrix is special! (After all, there are plenty of orthogonal matrices whose determinant is -1 , not at all special.)

The collection of 2×2 rotation matrices is called the Special Orthogonal Group of order 2, or, more commonly $\mathbf{S O (2)}$.

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$. | We can express the location of the point P in terms of its coordinates |
| :--- |
| $\qquad P=p_{x} x_{1}+p_{y} y_{1}$ |

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

$$
\text { by }{ }^{1} P=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] .
$$

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates
 $$
P=p_{x} x_{1}+p_{y} y_{1}
$$

$$
\begin{aligned}
& \text { To obtain the coordinates of } P \text { w.r.t. Frame } 0 \text {, we project } P \text { onto the } \\
& x_{0} \text { and } y_{0} \text { axes: }
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

To obtain the coordinates of P w.r.t. Frame 0 , we project P onto the x_{0} and y_{0} axes:

$$
\begin{aligned}
& p^{0}=\left[\begin{array}{l}
P \cdot x_{0} \\
P \cdot y_{0}
\end{array}\right]=\left[\begin{array}{l}
\left(p_{x} x_{1}+p_{y} y_{1}\right) \cdot x_{0} \\
\left(p_{x} x_{1}+p_{y} y_{1}\right) \cdot y_{0}
\end{array}\right]=\left[\begin{array}{l}
p_{x}\left(x_{1} \cdot x_{0}\right)+p_{y}\left(y_{1} \cdot x_{0}\right) \\
p_{x}\left(x_{1} \cdot y_{0}\right)+p_{y}\left(y_{1} \cdot y_{0}\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]=\boldsymbol{R}_{1}^{\mathbf{0}} \boldsymbol{P}^{\mathbf{1}}
\end{aligned}
$$

$$
P^{0}=R_{1}^{0} P^{1}
$$

Lets practice...

- Two coordinate frames: o_{0} and o_{1}
- Two free vectors: v_{1} and v_{2}

$$
\begin{array}{ll}
v_{1}^{0}=[] & v_{1}^{1}=[] \\
v_{2}^{0}=[] & v_{2}^{1}=[]
\end{array}
$$

Recall: $\cos \frac{\pi}{4}=0.5 \sqrt{2}, \quad \sin \frac{\pi}{4}=0.5 \sqrt{2}$

Lets practice...

Note: $\left\|v_{1}\right\|=4,\left\|v_{2}\right\|=3 \sqrt{2}$,

- Two coordinate frames: o_{0} and o_{1}
- Two free vectors: v_{1} and v_{2}

$$
\begin{array}{ll}
v_{1}^{0}=\left[\begin{array}{l}
4 \\
0
\end{array}\right] & v_{1}^{1}=\left[\begin{array}{c}
2 \sqrt{2} \\
-2 \sqrt{2}
\end{array}\right] \\
v_{2}^{0}=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right] & v_{2}^{1}=\left[\begin{array}{c}
-3 \sqrt{2} \\
0
\end{array}\right]
\end{array}
$$

More Practice...

$$
v_{1}^{0}=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \quad v_{2}^{0}=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right] \quad v_{1}^{1}=\left[\begin{array}{c}
2 \sqrt{2} \\
-2 \sqrt{2}
\end{array}\right] \quad v_{2}^{1}=\left[\begin{array}{c}
-3 \sqrt{2} \\
0
\end{array}\right]
$$

$$
\begin{gathered}
R_{1}^{0}=\left[\begin{array}{cc}
0.5 \sqrt{2} & -0.5 \sqrt{2} \\
0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right] \quad R_{0}^{1}=\left[\begin{array}{cc}
0.5 \sqrt{2} & 0.5 \sqrt{2} \\
-0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right] \\
v_{1}^{0}=R_{1}^{0} v_{1}^{1}=\left[\begin{array}{cc}
0.5 \sqrt{2} & -0.5 \sqrt{2} \\
0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
2 \sqrt{2} \\
-2 \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
v_{2}^{0}=R_{1}^{0} v_{2}^{1}=\left[\begin{array}{cc}
0.5 \sqrt{2} & -0.5 \sqrt{2} \\
0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
-3 \sqrt{2} \\
0
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right] \\
v_{1}^{1}=R_{0}^{1} v_{1}^{0}=\left[\begin{array}{cc}
0.5 \sqrt{2} & 0.5 \sqrt{2} \\
-0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right]\left[\begin{array}{c}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \sqrt{2} \\
-2 \sqrt{2}
\end{array}\right]
\end{gathered}
$$

OR, we can use coordinate transformations!

$$
v_{2}^{1}=R_{0}^{1} v_{2}^{0}=\left[\begin{array}{cc}
0.5 \sqrt{2} & 0.5 \sqrt{2} \\
-0.5 \sqrt{2} & 0.5 \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
-3 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-3 \sqrt{2} \\
0
\end{array}\right]
$$

Specifying Pose in the Plane

Suppose we now translate Frame 1 (no new rotatation). What are the coordinates of P w.r.t. Frame 0?

Since we merely translated P by a fixed vector d, simply add the offset to our

Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

This is just our eqn from the previous page

in which $0_{2}=\left[\begin{array}{ll}0 & 0\end{array}\right]$

The set of matrices of the form $\left[\begin{array}{cc}R & d \\ 0_{n} & 1\end{array}\right]$, where $R \in S O(n)$ and $d \in \mathbb{R}^{n}$ is called
the Special Euclidean Group of order n, or $S E(n)$.

Lets practice...

$$
T_{1}^{0}=[
$$

$$
T_{0}^{1}=[
$$

Recall: $\cos \frac{\pi}{4}=0.5 \sqrt{2}, \quad \sin \frac{\pi}{4}=0.5 \sqrt{2}$

Lets practice...

$$
\begin{gathered}
T_{1}^{0}=\left[\begin{array}{ccc}
0.5 \sqrt{2} & -0.5 \sqrt{2} & 4 \\
0.5 \sqrt{2} & 0.5 \sqrt{2} & 8 \\
0 & 0 & 1
\end{array}\right] \\
T_{0}^{1}=\left[\begin{array}{ccc}
0.5 \sqrt{2} & 0.5 \sqrt{2} & -6 \sqrt{2} \\
-0.5 \sqrt{2} & 0.5 \sqrt{2} & -2 \sqrt{2} \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Recall: $\cos \frac{\pi}{4}=0.5 \sqrt{2}, \quad \sin \frac{\pi}{4}=0.5 \sqrt{2}$

Inverse of a Homogeneous Transformation

What is the relationship between T_{1}^{0} and T_{0}^{1} ?

$$
T_{1}^{0} T_{0}^{1}=\left[\begin{array}{ccc}
0.5 \sqrt{2} & -0.5 \sqrt{2} & 4 \\
0.5 \sqrt{2} & 0.5 \sqrt{2} & 8 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0.5 \sqrt{2} & 0.5 \sqrt{2} & -6 \sqrt{2} \\
-0.5 \sqrt{2} & 0.5 \sqrt{2} & -2 \sqrt{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In general, $T_{k}^{j}=\left(T_{j}^{k}\right)^{-1}$ and $\left[\begin{array}{ll}R & d \\ 0_{n} & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} d \\ 0_{n} & 1\end{array}\right]$
This is easy to verify:

$$
\left[\begin{array}{ll}
R & d \\
0_{n} & 1
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R}^{T} & -R^{T} d \\
0_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
R R^{T} & -R R^{T} d+d \\
0_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
I_{n \times n} & 0_{n} \\
0_{n} & 1
\end{array}\right]=I_{(n+1) \times(n+1)}
$$

Composition of Transformations

From our previous results, we know:

$$
\left.\begin{array}{l}
P^{0}=T_{1}^{0} P^{1} \\
P^{1}=T_{2}^{1} P^{2}
\end{array}\right\} \underset{\text { But we also know: } \quad P^{0}=T_{2}^{0} P^{2}}{\longrightarrow} \quad T_{1}^{0} T_{2}^{1} P^{2}+
$$

This is the composition law for homogeneous transformations.

