

5

Lecture 5: The Variable Elimination Algorithm

Topics

- 1. The Sum-Product Algorithm for HMMs
- 2. Variable Elimination Algorithm
- 3. Complexity of Sparse Inference
- 4. MAP vs MPE

Motivation

- We saw MPE in HMMs: Max-Product
- Now: get full probabilistic picture
- Get an idea about complexity

1. The Sum-product Algorithm for HMMs

Replace elimination with the chain rule.

Done in class:

- Eliminate X₁
- Eliminate X₂
- Eliminate X₃

Eliminate X₁

• Form product factor

 $\psi(X_1, X_2) = \phi_1(X_1)\phi_2(X_1)\phi_3(X_1, X_2).$

• Calculate marginal:

$$\tau(X_{j+1}) = \sum_{x_j} \psi(x_j, X_{j+1})$$

• Calculate conditional:

$$P(X_j|X_{j+1}) = \frac{\psi(X_j, X_{j+1})}{\tau(X_{j+1})}$$

Eliminate X_2

• Form product factor

• Calculate conditional:

Eliminate X_3

• Form product factor

• Calculate *P(X₃)*

Back-substitute? Sample!

- The reverse elimination order is *always* a topological sort.
- Ancestral sampling yields samples from posterior.

 Sidebar: Can estimate posterior means for any real-valued function.

What, another Bayes net?

- Bayes net -> factor graph -> Bayes net again???
- Bayes net 1, all variables:

joint distribution $P(\mathcal{X}, \mathcal{Z})$

• Bayes net 2, only unknowns:

posterior $P(\mathcal{X}|\mathcal{Z})$

• In practice: build factor graph directly from the measurements.

2. The Variable Elimination Algorithm

Algorithm 5 The Variable Elimination Algorithm		
1: function ELIMINATE $(\Phi_{1:n})$	\triangleright given a factor graph on n variables	
2: for $j = 1n$ do	\triangleright for all variables	
3: $p(X_j \mathcal{S}_j), \Phi_{j+1:n} \leftarrow \text{EliminateOne}(\Phi_{j:n}, X_j)$	\triangleright eliminate X_j	
4: return $p(X_1 \mathcal{S}_1)p(X_2 \mathcal{S}_2)\dots p(X_n)$	\triangleright return Bayes net	

Algorithm 6 Eliminate variable X_j from a factor graph $\Phi_{j:n}$.		
1: function ELIMINATEONE $(\Phi_{j:n}, X_j)$		\triangleright given reduced graph $\Phi_{j:n}$
2:	Remove all factors $\phi_i(\mathcal{X}_i)$ that are adjacent to X_j	
3:	$\mathcal{S}(X_j) \leftarrow \text{all variables involved excluding } X_j$	\triangleright the separator
4:	$\psi(X_j, \mathcal{S}_j) \leftarrow \prod_i \phi_i(\mathcal{X}_i)$	\triangleright create the product factor ψ
5:	$p(X_j \mathcal{S}_j)\tau(\mathcal{S}_j) \leftarrow \psi(X_j,\mathcal{S}_j)$	\triangleright factorize the product ψ
6:	Add the new factor $\tau(\mathcal{S}_j)$ back into the graph	
7:	return $p(X_j \mathcal{S}_j), \Phi_{j+1:n}$	\triangleright Conditional and reduced graph

• Works for any factor graph

3. Complexity of Sparse Inference

- Depends on the tree-width.
- Tree-width = size of the largest separator that occurs.
- Examples in class.

- Eliminate the variables of interest last!
- What does that mean for complexity in this HMM?

Summary

- 1. The **sum-product** algorithm returns the full Bayesian posterior as a Bayes net.
- 2. The **variable elimination algorithm** is a generalization that works for *any* factor graph.
- 3. The **complexity** of variable elimination depends on the elimination order.
- **4.** MAP estimation is always as least as expensive, as it constrains the elimination order.