CS 3630!

Lecture 5:
The Variable
Elimination Algorithm

Topics

- 1. The Sum-Product Algorithm for HMMs
- 2. Variable Elimination Algorithm
- 3. Complexity of Sparse Inference
- 4. MAP vs MPE

Motivation

- We saw MPE in HMMs: Max-Product
- Now: get full probabilistic picture
- Get an idea about complexity

1. The Sum-product Algorithm for HMMs

Replace elimination with the chain rule.
Done in class:

- Eliminate X_{1}
- Eliminate X_{2}
- Eliminate X_{3}

Eliminate X_{1}

- Form product factor

$$
\psi\left(X_{1}, X_{2}\right)=\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right) .
$$

- Calculate marginal:

$$
\tau\left(X_{j+1}\right)=\sum_{x_{j}} \psi\left(x_{j}, X_{j+1}\right)
$$

- Calculate conditional:

$$
P\left(X_{j} \mid X_{j+1}\right)=\frac{\psi\left(X_{j}, X_{j+1}\right)}{\tau\left(X_{j+1}\right)}
$$

Eliminate X_{2}

- Form product factor
- Calculate marginal:
- Calculate conditional:

Eliminate X_{3}

- Form product factor

- Calculate $P\left(X_{3}\right)$

Back-substitute? Sample!

- The reverse elimination order is always a topological sort.
- Ancestral sampling yields samples from posterior.

- Sidebar: Can estimate posterior means for any real-valued function.

What, another Bayes net?

- Bayes net -> factor graph -> Bayes net again???
- Bayes net 1, all variables:

$$
\text { joint distribution } P(\mathcal{X}, \mathcal{Z})
$$

- Bayes net 2 , only unknowns:

$$
\text { posterior } P(\mathcal{X} \mid \mathcal{Z})
$$

- In practice: build factor graph directly from the measurements.

2. The Variable Elimination Algorithm

```
Algorithm 5 The Variable Elimination Algorithm
    function Eliminate \(\left(\Phi_{1: n}\right) \quad \triangleright\) given a factor graph on \(n\) variables
        for \(j=1 \ldots n\) do \(\quad \triangleright\) for all variables
            \(p\left(X_{j} \mid \mathcal{S}_{j}\right), \Phi_{j+1: n} \leftarrow \operatorname{EliminateOne}\left(\Phi_{j: n}, X_{j}\right) \quad \triangleright\) eliminate \(X_{j}\)
        return \(p\left(X_{1} \mid \mathcal{S}_{1}\right) p\left(X_{2} \mid \mathcal{S}_{2}\right) \ldots p\left(X_{n}\right) \quad \triangleright\) return Bayes net
```

```
Algorithm 6 Eliminate variable \(X_{j}\) from a factor graph \(\Phi_{j: n}\).
    function EliminateOne \(\left(\Phi_{j: n}, X_{j}\right) \quad \triangleright\) given reduced graph \(\Phi_{j: n}\)
        Remove all factors \(\phi_{i}\left(\mathcal{X}_{i}\right)\) that are adjacent to \(X_{j}\)
        \(\mathcal{S}\left(X_{j}\right) \leftarrow\) all variables involved excluding \(X_{j} \quad \triangleright\) the separator
        \(\psi\left(X_{j}, \mathcal{S}_{j}\right) \leftarrow \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right) \quad \triangleright\) create the product factor \(\psi\)
        \(p\left(X_{j} \mid \mathcal{S}_{j}\right) \tau\left(\mathcal{S}_{j}\right) \leftarrow \psi\left(X_{j}, \mathcal{S}_{j}\right) \quad \triangleright\) factorize the product \(\psi\)
        Add the new factor \(\tau\left(\mathcal{S}_{j}\right)\) back into the graph
        return \(p\left(X_{j} \mid \mathcal{S}_{j}\right), \Phi_{j+1: n}\)
\(\triangleright\) Conditional and reduced graph
```

- Works for any factor graph

3. Complexity of Sparse Inference

- Depends on the tree-width.
- Tree-width = size of the largest separator that occurs.
- Examples in class.

4. MAP vs MPE

Map estimate for X_{3}

Map estimate for X_{1}

- Eliminate the variables of interest last!
- What does that mean for complexity in this HMM?

Summary

1. The sum-product algorithm returns the full Bayesian posterior as a Bayes net.
2. The variable elimination algorithm is a generalization that works for any factor graph.
3. The complexity of variable elimination depends on the elimination order.
4. MAP estimation is always as least as expensive, as it constrains the elimination order.
