
CS 3630!

Lecture 2:
Sense, Think, Act

Sense, Think, Act
Suppose you are given a task: Rearrange the chairs in the
room into a circle. How would you proceed?
1. Look around the room and evaluate the situation.

Where are the chairs? How many chairs are there?

2. Make a plan:
1. Go the first chair, pick it up, place it in the desired position
2. Repeat for all N chairs.

3. Execute the plan.

Sense

Think

Act

This is the basic strategy followed by almost all robots.

Real-world
Environment

Perception

LocalizationPlanning

Motion Control

Environment model,
Local map

Position,
Global map

Path

Path Execution

Example: Navigation in a Known Environment

• We saw this diagram in the last lecture.
• Let’s look at it again, in the context of

sense, think, act.

Real-world
Environment

Perception

LocalizationPlanning

Motion Control

Environment model,
Local map

Position,
Global map

Path

Path Execution

Example: Navigation in a Known Environment

SENSE Sensing provides a connection
between the real world and the
robot’s internal representation of
the world.

Real-world
Environment

Perception

LocalizationPlanning

Motion Control

Environment model,
Local map

Position,
Global map

Path

Path Execution

Example: Navigation in a Known Environment

THINK

In this example, thinking involves:
• Processing perceptual information to

determine the position of the robot in its
environment

• Constructing a motion plan to move from
the current position to the goal position.

Real-world
Environment

Perception

LocalizationPlanning

Motion Control

Environment model,
Local map

Position,
Global map

Path

Path Execution

Example: Navigation in a Known Environment

ACT

In this example, acting involves
sending motion commands to the
robot’s motors, so that the robot will
move along the desired path to its
goal.

Real-world
Environment

Perception

LocalizationPlanning

Motion Control

Environment model,
Local map

Position,
Global map

Path

Path Execution

Example: Navigation in a Known Environment

ACT

THINK

SENSE

• In most robotics applications, the
robot does not succeed to perform
the task using a single episode of
sense, think, act.

• Typically, these stages are repeated
until the task is achieved: the sense,
think, act loop.

Sense, Think, Act at Different Time Scales

SENSE

THINKACT

Cycle time

The time to complete one cycle of this loop
depends on the task:
• Playing chess: minutes
• Hand-eye coordination: 30 Hz
• Force controlled robot: Order of KHz

• When cycle time is very fast, we use tools
from control theory, and model systems
using differential equations (continuous
time performance).

• When cycle time is very slow, we might
have scene understanding and
deliberative planning.

• As computers become faster, the
boundary between these begins to blur.

Representing the World

• Perception has the responsibility of converting sensor measurements
into a representation of the world.

• Planning uses these representations to reason about the effects of
actions in the world.

This raises the question:
What kind of representations should the robot use?

Symbolic Representations
For high-level task planning, it
is often sufficient to represent
the world using symbolic
descriptions.

Goal State:
• ON(table,C)
• On(A,B)
• On(B,C)
• Clear(A)

Initial State:
• ON(table,B)
• On(table,C)
• On(A,C)
• Clear(B)
• Clear(A)

Representation of Blocks
World using simple predicates

High-Level Planning
A high-level planner uses a symbolic representation of actions:
• Preconditions: what must be true in the world before the action is

applied?
• Effects: what changes occur in the world after the action occurs?

Pickup(?X):
Preconditions: Gripper(empty)
Effects: Gripper(full), Holding(?X)

If the goal is to be holding Block B,
the planner can instantiate the
variable ?X to B

Pickup(B):
Preconditions: Gripper(empty)
Effects: Gripper(full), Holding(B)

Geometric Representations
In robotics, we often require specific geometric information.
To describe an object’s position:
• Attach a coordinate frame to the object (rigid attachment of frame to the object)
• Specify the position and orientation of the coordinate frame.
If we know this information, we know everything about the object’s position!

x

z
y x

z
y

x

z
y

State
The term state is used in the study of dynamical systems to describe
the relevant aspects of an objects motion.
If we know the state 𝑥 at time 𝑡# along with the system input for all
𝑡 ≥ 𝑡#, then we can predict the state at all future times.

𝒙(𝒕)

𝒙̇(𝒕)
Example:
• If we know the position and

velocity of a projectile at a
given time, we can compute
its entire trajectory.

Grid World
• For many mobile robotics

applications, one can represent the
world as a grid.

• Each grid cell is either free or
occupied by an obstacle.

• The path planning problem is to find
a free path from start to goal.

• There are many variations, e.g.,
assign to each cell in the grid a
probability that it is occupied by an
obstacle (we’ll see this later).

Path Planning in a Grid World
The Simplest case of Thinking

Grid World: Path Planning
Start position

Goal position

One possible solution path.
• How can we effectively find any

path from start to goal?
• How should we decide which path

to take?

Grid World
Start position

Goal position

One strategy is to systematically explore
various possible solution paths.

This raises the question:
What strategies should we use to explore

alternative paths?

Grid World
A grid can be represented as a graph:
• Each cell in the grid corresponds to

a vertex in the graph
• Vertices that correspond to

adjacent grid cells are connected by
an edge.

Grid World
A grid can be represented as a graph:
• Each cell in the grid corresponds to

a vertex in the graph
• Vertices that correspond to

adjacent grid cells are connected by
an edge.

Grid World
A grid can be represented as a graph:
• Each cell in the grid corresponds to

a vertex in the graph
• Vertices that correspond to

adjacent grid cells are connected by
an edge.

And now, we can use graph search algorithms to find a path!

Graph Traversal

• Problem: Find a path from a start vertex to a goal vertex
• Optional requirements:

• Must traverse through certain nodes
• Shortest path
• Find one of multiple goals

• Solution: use search algorithms.

Tree Search

General Search Process

1. Check: did we run out of options? If so, planning failed.
2. Check: are we at the goal? If so, planning succeeded, return a path.

3. Expand the current state by considering each legal action (discovering
the neighbors in the graph), thereby generating a new set of states.
Keep these in a list (frontier)
Note: all this planning happens in the robot’s “brain”, no actions are actually taken

4. Simulate one of the possible actions from this list

5. Then go back to Step 1 and repeat.

Borrowing an example from AI: map of
Romania

Tree search example

1. Check if current node
is the goal

Tree search example

2. Expand neighboring
nodes

Tree search example

3. Pick a new node to go
to.

Tree search example

Note that we could loop back to
Arad. Have to make sure we don’t
go in circles forever!

Explored

Frontier

Unexplored

Pseudocode

a.k.a. frontier

Check if we’re at the goal

Check if we ran out of options

Expand node

(ensure we don’t loop)

Search strategies

• A search strategy is defined by picking the order of node expansion
• Search algorithms differ mostly in the order in which they pick the nodes from

the frontier

Uninformed search strategies

• Uninformed search strategies use only the topology of the graph:
which states are connected by which actions. No additional
information.

• Later we’ll talk about informed search, in which you can estimate
which actions are likely to be better than others.

Breadth-first search

• Expand shallowest unexpanded node
• Implementation:

• Frontier is a FIFO queue, i.e., new successors go at end

Depth-first search

• Expand deepest unexpanded node
• Implementation:

• Frontier is a LIFO queue, i.e., put successors at front (i.e. a stack)

Comparison of BFS/DFS

• Breadth First Search and Depth First Search rely only on the structure of
the graph

• BFS:
• Guaranteed to find shortest path
• Huge memory requirements

• BFS b=10 to depth of 10
• 3 hours (kind of bad)
• 10 terabytes of memory (really bad)

• DFS
• Efficient memory requirements
• Does not guarantee to find shortest path
• Might not terminate

Action Cost…

• BFS/DFS do not take into account the cost of actions

• Action cost, 𝑔(𝑛), is the total cost of moving from the start location to
node 𝑛

Uniform-cost search

• For graphs with actions of different cost
• Equivalent to breadth-first if step costs all equal

• Expand least “total cost” unexpanded node
• Implementation:

• frontier= queue sorted by path cost g(n), from smallest to largest (i.e. a
priority queue)

Note: Uniform Cost Search is same as Dijkstra's Algorithm, but focused on finding the shortest path
to a single goal node rather than the shortest path to every node.

Informed Search

goal

start

Uninformed search Informed search

Informed Search

• What if we had an evaluation function ℎ(𝑛) that gave us an estimate
of the cost of how far 𝑛 is from the goal

• h(n) is called a heuristic

Romania with step costs in km
h(n)

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)
• e.g., f(n) = hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that is estimated to be
closest to goal

Best-First Algorithm

Performance of greedy best-first search

• Not guaranteed to find shortest path

• With a good heuristic, it can be very efficient.

What can we do better?

A* search

• Avoid expanding paths that are already expensive
• Consider

• Cost to get here (known) – 𝑔(𝑛)
• Cost to get to goal (estimate from the heuristic) – ℎ(𝑛)

• Evaluation function f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path through n to goal

start goaln

g(n) h(n)

f(n)

A* Heuristics

• A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is equal the true cost, g*(n), of reaching the
goal state from n.

• An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

Admissible heuristics

E.g., for the 8-puzzle:

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance (i.e., number of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (i.e., number of squares from desired location of each tile)

• h1(S) = ? 9
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 Which is better?

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1
• à h2 is better for search

• What does better mean?
• Finds the solution faster, expands fewer nodes

Visually

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f e
xp

ec
te

d
ex

pa
ns

io
ns

Search depth

Uninformed

H1

H2

What happens if heuristic is not admissible?

• Will still find a solution, but possibly not the optimal solution

The heuristic h(x) guides the performance of A*

• Let d(x) be the actual distance between S and G
• h(x) = 0 :

• A* is equivalent to Uniform-Cost Search
• h(x) <= d (x) :

• guarantee to compute the shortest path; the lower the value h(x), the more
node A* expands

• h(x) = d (x) :
• follow the best path; never expand anything else; difficult to compute h(x) in this

way!
• h(x) > d(x) :

• not guarantee to compute a best path; but very fast
• h(x) >> g(x) :

• h(n) dominates -> A* becomes the best first search

A* in Robotics

• One of the most frequently used algorithms for path planning,
manipulation, and obstacle avoidance due to its efficiency.

• Primarily used in 2D environments.

Search Algorithm Summary

• Uninformed (topology only):
• Breadth First Search (does not consider path cost)
• Depth First Search (does not consider path cost)
• Uniform Cost (considers path cost g(n))

• Informed:
• Greedy Best-First Search (heuristic h(n) only)
• A* Search (h(n) + g(n))

• Any of these algorithms can be used to find a solution to the graphs below

Practice A*

What is the order in which nodes
are expanded if start is A and goal
is F?

What is the final path from A to F?

Practice A*

What is the order in which nodes
are expanded if start is A and goal
is F?

ACBDEF

What is the final path from A to F?

ACDEF

