
CS 3630

Lecture 24:
A brief introduction to
Deep Reinforcement
Learning

This lecture borrows heavily from the Deep RL
Boot Camp slides, in particular the slide decks by
Peter Abbeel, Rocky Duan, Vlad Mnih, Andrej
Karpathy, and John Schulman

Topics

1. Recap: MDP and RL Methods
2. Deep Q-Learning
3. Policy Optimization

Motivation • Deep learning success in perception
• MDP and RL frameworks

• Well understood
• Early successes (backgammon)
• Not great on more complex

problems

• Can deep learning make RL really work?
• Evidence points to yes!

Image from DeepMimic paper, Peng et al 2018

Some RL Success Stories

Overview

This lecture will not go in depth

Provide rough overview, pointers to
excellent starting points

Lecture materials all cribbed from
Deep RL Boot Camp, took place
August 2017 in Berkeley

All slides/lectures are online:
https://sites.google.com/view/deep-
rl-bootcamp/home

https://sites.google.com/view/deep-rl-bootcamp/home

Recap: Markov Decision Processes (MDP)

* P(s’|s,a) == T(s,a,s’) from Seth’s lectures

A note on Rewards

• Three different ways to do the reward:
• R(s): reward is function of state only (Seth’s lectures)
• R(s, a): reward in given state depends on action you take
• R(s, a, s’): reward also depends on in what state you land
• Most general
• Matches Deep RL Bootcamp slides

Image copyright Stevens 2003, used here for academic purposes

Recap: Policy and Value Function

• Policy:
• S -> A
• Optimal 𝜋∗

• Value function:
• Satisfies Bellman equations

if actions 𝑎 𝑠 = 𝜋∗(𝑠),
i.e. actions are chosen
chosen according to
optimal policy 𝜋∗:

Optimal value 𝑉∗(𝑠)

• Exercise: check Bellman
equations with given noise 0.2
(actions only work 80% of the
time) and discount factor 0.9

Recap:
Value Iteration

Image borrowed from (useful!) Nvideo blog post on RL:
https://devblogs.nvidia.com/deep-learning-nutshell-

reinforcement-learning/

https://devblogs.nvidia.com/deep-learning-nutshell-reinforcement-learning/

Recap:
Policy Iteration

Image borrowed from (useful!) blog post at https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html

https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html

Recap: Reinforcement Learning
• Passive:
• Direct utility estimation
• Adaptive Dynamic Programming
• Temporal Difference Learning (model-free!)

• Active:
• Model-based: exploitation vs. exploration
• Q-learning (model-free!)

Image by Praphul Singh, https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks

https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks

2. Deep Q-learning

A simple (tabular) Q-learning algorithm:

Q-learning on gridworld

Q-learning properties

Can tabular Q-learning scale?

Can tabular Q-learning scale?

Enter DQN (2015 Nature paper, Mnih et al)

DQN overview

Neural Network to approximate Q-values

Learning
Space
Invaders

Value function, visualized

• 512-dim state space
(final hidden layer)
• “t-SNE” embedding

visualizes this in 2D
• Color is value of state

Learning all
the games!

• Human = 100%

3. Policy Gradient Method

• Optimize over stochastic policies

Why Policy Optimization

Policy leads to trajectories 𝜏

Vanilla Policy Gradient
• 1992 (!) REINFORCE algorithm
• Roll out many trajectories
• Compares current policy with a baseline b
• Adapt network to improve reward on trajectories that compare

advantageously (At) to the baseline

Improvements led to SOTA methods

• Rather complicated and beyond scope
• DDPG: Deep Deterministic Policy Gradient
• TRPO: trust-region Policy Optimization
• PPO: Proximal Policy Optimization

• See blog post: https://openai.com/blog/openai-baselines-ppo/

• Some successes:
• OpenAI gym:

• Atari:

https://openai.com/blog/openai-baselines-ppo/

Summary

1. Recap: MDP and RL Methods
2. Deep Q-Learning (DQN) beats humans on many Atari

games, and is 10K citation Nature paper now
3. Policy Optimization learns a network that takes a state

and outputs a stochastic action. Tricky to get to work,
lots of heavy math, but great success in robotics-like
domains.

