
CS 3630

Lecture 24:
A brief introduction to 
Deep Reinforcement 
Learning

This lecture borrows heavily from the Deep RL 
Boot Camp slides, in particular the slide decks by 
Peter Abbeel, Rocky Duan, Vlad Mnih, Andrej 
Karpathy, and John Schulman



Topics

1. Recap: MDP and RL Methods
2. Deep Q-Learning
3. Policy Optimization



Motivation • Deep learning success in perception
• MDP and RL frameworks 

• Well understood
• Early successes (backgammon)
• Not great on more complex 

problems

• Can deep learning make RL really work?
• Evidence points to yes!

Image from DeepMimic paper, Peng et al 2018



Some RL Success Stories 



Overview

This lecture will not go in depth

Provide rough overview, pointers to 
excellent starting points

Lecture materials all cribbed from 
Deep RL Boot Camp, took place 
August 2017 in Berkeley

All slides/lectures are online:
https://sites.google.com/view/deep-
rl-bootcamp/home

https://sites.google.com/view/deep-rl-bootcamp/home


Recap: Markov Decision Processes (MDP)

* P(s’|s,a) == T(s,a,s’)  from Seth’s lectures



A note on Rewards

• Three different ways to do the reward:
• R(s): reward is function of state only (Seth’s lectures)
• R(s, a): reward in given state depends on action you take
• R(s, a, s’): reward also depends on in what state you land
• Most general
• Matches Deep RL Bootcamp slides

Image copyright Stevens 2003, used here for academic purposes



Recap: Policy and Value Function

• Policy:
• S -> A
• Optimal 𝜋∗

• Value function:
• Satisfies Bellman equations 

if actions 𝑎 𝑠 = 𝜋∗(𝑠), 
i.e. actions are chosen 
chosen according to 
optimal policy 𝜋∗: 

Optimal value 𝑉∗(𝑠)

• Exercise: check Bellman 
equations with given noise 0.2
(actions only work 80% of the 
time) and discount factor 0.9



Recap: 
Value Iteration

Image borrowed from (useful!) Nvideo blog post on RL: 
https://devblogs.nvidia.com/deep-learning-nutshell-

reinforcement-learning/

https://devblogs.nvidia.com/deep-learning-nutshell-reinforcement-learning/


Recap:
Policy Iteration

Image borrowed from (useful!) blog post at https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html

https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html


Recap: Reinforcement Learning
• Passive:
• Direct utility estimation
• Adaptive Dynamic Programming
• Temporal Difference Learning (model-free!)

• Active:
• Model-based: exploitation vs. exploration
• Q-learning (model-free!)

Image by Praphul Singh, https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks

https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks


2. Deep Q-learning

A simple (tabular) Q-learning algorithm:



Q-learning on gridworld



Q-learning properties



Can tabular Q-learning scale?



Can tabular Q-learning scale?



Enter DQN (2015 Nature paper, Mnih et al)



DQN overview



Neural Network to approximate Q-values



Learning 
Space 
Invaders



Value function, visualized

• 512-dim state space 
(final hidden layer)
• “t-SNE” embedding 

visualizes this in 2D
• Color is value of state



Learning all 
the games!

• Human = 100%



3. Policy Gradient Method

• Optimize over stochastic policies



Why Policy Optimization



Policy leads to trajectories 𝜏



Vanilla Policy Gradient
• 1992 (!) REINFORCE algorithm
• Roll out many trajectories
• Compares current policy with a baseline b
• Adapt network to improve reward on trajectories that compare

advantageously (At) to the baseline



Improvements led to SOTA methods

• Rather complicated and beyond scope
• DDPG: Deep Deterministic Policy Gradient
• TRPO: trust-region Policy Optimization
• PPO: Proximal Policy Optimization

• See blog post: https://openai.com/blog/openai-baselines-ppo/

• Some successes:
• OpenAI gym:

• Atari:

https://openai.com/blog/openai-baselines-ppo/


Summary

1. Recap: MDP and RL Methods
2. Deep Q-Learning (DQN) beats humans on many Atari 

games, and is 10K citation Nature paper now
3. Policy Optimization learns a network that takes a state 

and outputs a stochastic action. Tricky to get to work, 
lots of heavy math, but great success in robotics-like 
domains.


