CS 3630

N
-

Lecture 24:
A brief introduction to

Deep Reinforcement
Learning

This lecture borrows heavily from the Deep RL)
Boot Camp dlides, in particular the slide decks by B
Peter Abbeel, Rocky Duan, Vlad Mnih, Andrej N 7
Karpathy, and John Schulman

Topics

1. Recap: MDP and RL Methods
2. Deep Q-Learning
3. Policy Optimization

é \\L/}T‘\/ R NS/ ; } g N Ll E

N\ N

. . * Deep learning success in perception
Motivation

e MDP and RL frameworks
* Well understood

* Early successes (backgammon)

* Not great on more complex
problems

* Can deep learning make RL really work?
* Evidence points to yes!

Image from DeepMimic paper, Peng et al 2018

Some RL Success Stories

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

Iterotion O

Silver et al, 2014 (DPG)
Lillicrap et al, 2015 (DDPG) Schulman et al, Levine*, Finn*, et Silver*, Huang*, et

. 2016 (TRPO + GAE |, 2016 |, 2016
Mnih et al 2013 (DQN) () a(GPS) (ZI haGo)
Mnih et al, 2015 (A3C) P

Overview

D All slides/lectures are online:

https://sites.google.com/view/deep-
rl-bootcamp/home

https://sites.google.com/view/deep-rl-bootcamp/home

Recap: Markov Decision Processes (MDP)

An MDP is defined by:

Set of states §

Set of actions 4

Transition function P(s’|s, a)
Reward function R(s, a, s’)
Start state s,

Discount factor y

Horizon H

H

GOaI: ma:zt,,E[Z Y R(S¢, At, St+1)|7]

t=0

" P(sTsa) =

= 7(sa,s)) from Seth’s lectures

——7" WATCH WHAT | ‘ @7—”"3;‘"‘0”]

CAN MAKE PAVLOV DO. o=l =nli-!
2 ﬁéﬁysfwl&p:::l\?}m're T) P e T
A note on Rewards |\ wainiiar) ?,é
. ‘ , T AW : ! \’\2 ‘e

* Three different ways to do the reward:
* R(s): reward is function of state only (Seth’s lectures)
* R(s, a): reward in given state depends on action you take
* R(s, a, s’): reward also depends on in what state you land
* Most general

* Matches Deep RL Bootcamp slides -

Image copyright Stevens 2003, used here for academic purposes

Recap: Policy and Value Function

* Policy:
*S>A
* Optimal r*

* Value function:
* Satisfies Bellman equations V™ (s) = maxz P(s'|s,a) [R(s,a,s") +yV*(s")]
if actions a(s) = m*(s), ¢ =
i.e. actions are chosen '
chosen according to
optimal policy *:

Optimal value V*(s)

* Exercise: check Bellman
equations with given noise 0.2
(actions only work 80% of the
time) and discount factor 0.9

VALUES AFTER 100 ITERATIONS

0.9)

Noise T;t’
Discou

Algorithm:
Start with V" (s) =0 foralls.
Fork=1, .., H:

For all states sin S:

mi.(s) < argmax) P(s'|s,a) (R(s, a,8') + 7Vi_1(s"))

Iteration 1 Iteration 2 Iteration 3
. . S S S
This is called a value update B
_ |
N []
G
Reca N Iteration 4 Iteration 5 ‘ ‘ Iteration 6 ‘ ‘
p * s s s Bl
Value Iterati e SRS
L]
a ue era Ion RN e N [
G
Iteration 20 ‘ ‘ Possible Solution 1 Possible Solution 2
S S S
. [] []
Image borrowed from (useful!) Nvideo blog post on RL: H
https://devblogs.nvidia.com/deep-learning-nutshell- = DE
reinforcement-learning/

https://devblogs.nvidia.com/deep-learning-nutshell-reinforcement-learning/

Recap: “-F R FEEE FEEE FERE
. . n Sofin oofin nofn oo e
Policy Iteration | =l=l=1 Wi=lri=) Bi=lvi=] fi=[=) =lil=
B e e e e S e e e

N nofn nogn - nogn - nogn - e
nEnsinsnsinsnsinEnsnEss

= Policy evaluation for current policy 7Tk :

= Iterate until convergence

Vi (s) <=) P(s'|s,m(s)) [R(s, m(s), ") + V™ (s)]

m Policy improvement: find the best action according to one-step
look-ahead

Tr+1(8) < arg maxz P(s'|s,a) [R(s,a,s") + V™ (s")]

= Repeat until policy converges
// \\\
= At convergence: optimal policy; and converges faster than value iteration under some c{ tions
AN 7/
N 74

Image borrowed from (useful!) blog post at https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html

https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html

Recap: Reinforcement Learning

* Passive:
* Direct utility estimation
e Adaptive Dynamic Programming
» Temporal Difference Learning (model-free!)

* Active:
* Model-based: exploitation vs. exploration
* Q-learning (model-free!)

Q’(s, a) = expected utility starting in s, taking action a, and (thereafter)
QTable acting optimally
State-Action Value

Bellman Equation:

7 Q(s,0) =) P(s'ls,a)(R(s,a,8') + ymax Q*(s',a))

State

o|lo|o|o|o|o|o|0o|O|=

Q-Value Iteration:

Q Learning Qisa(s,0) < D P(s'ls, a)(R(s,0,8) + ymax Qi(s/, a")
s’ E S\)

Image by Praphul Singh, https://blogs.oracle.com/datascience/reinforcement-learning-deep-g-networks

https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks

2. Deep Q-learning

A simple (tabular) Q-learning algorithm:

Algorithm:
Start with Qo (s, a) foralls, a.
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = R(s,a, s’)
Sample new initial state s’
else:

target = R(s, a, s') + ymax Qi (s,)

Qri1(s,a) + (1 — a)Qr(s, ag + a [target]
s s

Q-learning on gridworld

-]
<<

>XPDAPK

» States: 11 cells

* Actions: {up, down, left, right}

* Deterministic transition function
* Learning rate: 0.5

* Discount: 1

* Reward: +1 for getting diamond, -1 for falling into trap

Q-learning properties

= Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

m This is called off-policy learning

s Caveats:
= You have to explore enough

= You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly

Can tabular Q-learning scale?

s Discrete environments

Gridworld
107

aEse

Tetris
10760

Atari
107308 (ram) 1076992 (pixels)

Can tabular Q-learning scale?

= Continuous environments (by crude discretization)

|
||l
]!

Humanoid
10700

Crawler
1072

Enter DON (2015 Nature paper, Mnih et al)

18200

Pong Enduro Beamrider

« 49 ATARI 2600 games.
« From pixels to actions.
« The change in score is the reward.
« Same algorithm.
- Same function approximator, w/ 3M free parameters.
- Same hyperparameters.
Roughly human-level performance on 29 out of 49 games.

9&‘3'@ ﬂsﬁ o

High-level idea - make Q-learning look like supervised learning.

DQN overview

e Two main ideas for stabilizing Q-learning.

Apply Q-updates on batches of past experience instead of online:

o Experience replay (Lin, 1993).
o Previously used for better data efficiency.

o Makes the data distribution more stationary.

Use an older set of weights to compute the targets (target network):

o Keeps the target function from changing too quickly.

Li(oi) = Es,a,s’,er T+ Y qu Q(S” a,; 01_) - Q(Sa a; 02)

~ >
-~

target

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (

/
L)

N

ﬁ
) ||

J)
¢ //

Neural Network to approximate Q-values

Convolution Convolution Fully connected Fully connected
v hd v v
| No noul‘
8 [[3 n
8 D o . o
. . e\ | n
8 /, . . o | 3
t) m t\\ ¢ D\ .
le@: i@
§ .)) m
L] . . ’I‘*O
gx D L] . ¢ //
8\ . ° o //
5 [L] [N+O
[L) L) L)
: \ig v/ 1 !
"""

Figure 1 | Schematic illustration of the convolutional neural network. The symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0,x)).

map ¢, followed by three convolutional layers (note: snaking blue line

Average score per episode 8

Learning

Space
s
Invaders
2,200 o 10
2,000} 9
1,800} S
1,600} ! pm N\M M E 3
1,400} . |||. M |) g 6
1,200} MM ‘\ S 5
1,000 rJ\ S g4
800 } § 3
600 } (S
400 } <
200 N
ol 0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200 -
Training epochs —
Training epochs |

Value function, visualized

* 512-dim state space
(final hidden layer)

* “t-SNE” embedding
visualizes this in 2D

* Color is value of state

Video Pinball |
Boxing
Breakout |
Star Gunner |
Robotank |

Learning all oy

I DemonG:t?::I:]
t e gal I leS M NameThisGame_
As:a:::: 7

Road Runner |
Kangaroo |

* Human = 100% dames Bond
Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |

Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |

H.ER.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |

Bank Heist |
River Raid |
Zaxxon |

Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |} 7%
Frostbite |} 6%
Gravitar |F5%

Private Eye |h2%
Montezuma's Revenge : 0%

)

At human-level or above

Below human-level

*"-"*m'"'ma'mnllll||l|\m||

. -
-

w : N
PG ;ng

-

I I | [| ! I
100 200 300 400 500 600 1,000 4,500%

o —

3. Policy Gradient Method

* Optimize over stochastic policies

= Consider control policy parameterized
by parameter vector 6

H
== max E[Z R(s¢)|me]

P | =/}
S

i< =

: =y S
Q) = |p|=——|6, t=0

= o (uls)

state Eeward action
$ i

= Stochastic policy class (smooths out
the problem):

U
' s | Environment]4—

mg(u|s) : probability of action u in state s

Why Policy Optimization

= Often 7T can be simpler than Q or V
= E.g., robotic grasp

= V:doesn’t prescribe actions

= Would need dynamics model (+ compute 1 Bellman back-up)

= Q: need to be able to efficiently solve arg max Qg(s,u)
u

= Challenge for continuous / high-dimensional action spaces”

Policy leads to trajectories T

We let 7 denote a state-action sequence sg,ug,...,Sg,ug. We overload
- H
notation: R(7) = > ;_, R(s¢,us).

H
Uf) = E[Z R(s¢,ut);me] = Z P(1;0)R(7)

t=0

In our new notation, our goal is to find 6:

max U (6) = mgxzp(f;o)zz(f) ﬁ »)}

Vanilla Policy Gradient

* 1992 (!) REINFORCE algorithm
* Roll out many trajectories
e Compares current policy with a baseline b

* Adapt network to improve reward on trajectories that compare
advantageously (A,) to the baseline

Algorithm 1 “Vanilla" policy gradient algorithm
Initialize policy parameter 6, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = 3/ _! 4" ~*ry, and
the advantage estimate At = R; — b(s:).
Re-fit the baseline, by minimizing ||b(s:) — Re||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms Vy log 7(a; | st, 0)AAt
end for

Improvements led to SOTA methods

* Rather complicated and beyond scope
* DDPG: Deep Deterministic Policy Gradient
e TRPO: trust-region Policy Optimization

* PPO: Proximal Policy Optimization
* See blog post: https://openai.com/blog/openai-baselines-ppo/

* Some successes:
* OpenAl gym:

* Atari: | A2C ACER PPO Tie PN
2R\

(1) avg. episode reward over all of training 1 18 30 0 L 19)))

(2) avg. episode reward over last 100 episodes 1 28 19 1 N Y/

https://openai.com/blog/openai-baselines-ppo/

Summary

1. Recap: MDP and RL Methods

2. Deep Q-Learning (DQN) beats humans on many Atari
games, and is 10K citation Nature paper now

3. Policy Optimization learns a network that takes a state
and outputs a stochastic action. Tricky to get to work,
lots of heavy math, but great success in robotics-like
domains.

