CS 3630!

Lecture 21:

Deep Learning
in Robotics

Images and text sampled from a selection of 2019 research papers.



Motivation

Robotics:
* Perception, thinking, acting

Deep learning has revolutionized perception

Getting increasingly important in
thinking/acting

Previous lecture:
* High-level intro to CNNs and learning for perception Ny

This lecture:
* Applications in robotics
* Not a comprehensive overview!

 Sample from best papers at ICRA and CORL Fr e


https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Computing the Stereo Matching Cost with a

Deep Stereo Convolutional Neural Network
Jure Zbontar Yann LeCun
University of Ljubljana New York University
jure.zbontar@fri.uni-1j.si yann@cs.nyu. edu
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A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation

Stereo Datasets

Nikolaus Mayer*!, Eddy Ilg*!, Philip Hausser*2, Philipp Fischer*!T

!University of Freiburg 2Technical University of Munich
1{mayern,ilg,fischer}@cs.uni—freiburg.de 2haeusser@cs.tum.edu
Daniel Cremers Alexey Dosovitskiy, Thomas Brox
o Fly[ngTh [ng s3D -> Dlsp Net Technical University of Munich University of Freiburg

cremers@tum.de {dosovits,brox}@cs.uni-freiburg.de




Unsupervised Monocular Depth Estimation with Left-Right Consistency

I\/I O n O C u | a r D e pt h Clément Godard Oisin Mac Aodha Gabriel J. Brostow

University College London
http://visual.cs.ucl.ac.uk/pubs/monoDepth/

* Can we learn depth from a single image?
* Train on stereo, but test on mono!
* Learn to war left to right and vice versa
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Figure 1. Our depth prediction results on KITTI 2015. Top to bottom:
input image, ground truth disparities, and our result. Our method is

able to estimate depth for thin structures such as street signs and poles.
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The International Conference on Robotics and Automation (May 20-
24) is the flagship conference of the IEEE Robotics and Automation
Society, bringing together the world’s top researchers and
companies to share ideas and advances in the field.
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Localization in driving (best paper runner up)

Variational End-to-End Navigation and Localization

Alexander Amini!, Guy Rosman?, Sertac Karaman® and Daniela Rus!

End-to-End
Sensory Inputs

Raw Camera Pixels

Course-grained
Noisy Localization

v

Variational
Neural Network

Key Contributions

Steering Control

Posterior
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Estimating tactile properties from images (2" runner up)

Deep Visuo-Tactile Learning:
Estimation of Tactile Properties from Images

Kuniyuki Takahashi, Jethro Tan
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Fig. 2: Proposed network architecture for deep visuo-tactile learning composed of encoder-decoder layers and latent variables.
Input is texture image of material and, output is the tactile data contains measured forces by a tactile sensor in the x, y, and
z axes. After training, latent variables would contain tactile properties of materials correlating images with tactile sense.
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Multimodal perception (best paper)

Making Sense of Vision and Touch: Self-Supervised Learning of
Multimodal Representations for Contact-Rich Tasks

Michelle A. Lee*, Yuke Zhu*, Krishnan Srinivasan, Parth Shah,
Silvio Savarese, Li Fei-Fei, Animesh Garg, Jeannette Bohg
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Fig. 2: Neural network architecture for multimodal representation learning with self-supervision. The network takes data from three
different sensors as input: RGB images, F/T readings over a 32ms window, and end-effector position and velocity. It encodes and fuses
this data into a multimodal representation based on which controllers for contact-rich manipulation can be learned. This representation

learning network is trained end-to-end through self-supervision.



Domain randomization (best student paper)

Closing the Sim-to-Real Loop:
Adapting Simulation Randomization with Real World Experience

Yevgen Chebotar!-2 Ankur Handa! Viktor Makoviychuk!
Miles Macklin!3 Jan Issac! Nathan Ratliff! Dieter Fox14

Fig. 1. Policies for opening a cabinet drawer and swing-peg-in-hole tasks trained by alternatively performing reinforcement learning with multiple agents
in simulation and updating simulation parameter distribution using a few real world policy executions.
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~The onference on Robot Lea?hmg (CoRL}is a ‘Aew,annual mternatlanal conference foeusmg on the mtet:ecf on of robotlcskangl

machlne learning. The first meeting (CoRL 2017) and the second meeting (CoRL 2018) were held in Mountain View, California on

November 13-15,2017 and in Zurlch Swntzerland on October 29 - 31 2018, respectlvely )They brought tqgether about 350 of the best
earning.
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Perception

and
Manipulation

[1B] Perception and Manipulation (09h45 - 10h30)

Oral presentation (10 min presentation + 4 min QA)
Chair: Eiji Uchibe (Advanced Telecommunications Research Institute International)

1B-01

Towards Learning to Detect and Predict Contact Events on Vision-based Tactile Sensors
Yazhan Zhang (HKUST)*

Weihao Yuan (HKUST)

Zicheng Kan (HKUST)

Michael Yu Wang (HKUST)

1B-02
Multi-Frame GAN: Image Enhancement for Stereo Visual Odometry in Low Light

Nan Yang (Technical University of Munich)*
Eunah Jung (TUM)
Daniel Cremers (TU Munich)

1B-03
Learning to Manipulate Objects Collections Using Grounded State Representations

Matthew Wilson (University of Utah)*
Tucker Hermans (University of Utah)




Stereo VO

Figure 1: We propose Multi-Frame GAN (MFGAN) for stereo VO in challenging low light environ-
ment. The MFGAN takes two consecutive stereo image pairs and outputs the enhanced stereo im-
ages while preserving temporal and stereo consistency. On the right side, the estimated trajectories
by the state-of-the-art stereo feature-based VO method Stereo ORB-SLAM and the state-of-the-art
direct VO method Stereo DSO are presented. Due to the low image gradient, dynamic lighting and
halo, Stereo DSO and Stereo ORB-SLLAM cannot achieve good tracking accuracy in the night scene.
With the translated images from MFGAN, the performance of both methods is notably improved.

« MF = Multi-Frame
* GAN = Generative Adversarial Networks -
* VO = Visual Odometry



Manipulating Objects
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Figure 1: Cartoon diagram of our approach. We first independently train two encoder networks, one convolutional
neural network (CNN) and one graph neural network (GNN) using a multi-object state and dynamics loss function.
. . CNN GNN GNN
Then, during our RL phase, we embed the observation: 0 — ¢,, state: s — ¢, and goal: g — ¢,, and

we use the embeddings in an asymmetric actor critic framework [10] to train a multi-object policy .
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Planning

and
Control

[1F] Planning and Control (14h00 - 15h00)

Oral presentation (10 min presentation + 4 min QA)
Chair: Kostas Bekris (Rutgers University)

1F-01

Connectivity Guaranteed Multi-robot Navigation via Deep Reinforcement Learning
Juntong Lin (Sun Yat-sen University)

Xuyun Yang (Sun Yat-sen University)

Peiwei zheng (Sun Yat-sen University)

HUI CHENG (Sun Yat-Sen University)*

1F-02

Dynamics Learning with Cascaded Variational Inference for Multi-Step Manipulation
Kuan Fang (Stanford Univeristy)*

Yuke Zhu (Stanford University)

Animesh Garg (Stanford, Nvidia)

Silvio Savarese (Stanford University)

Li Fei-Fei (Stanford University & Google)

1F-03

An Online Learning Procedure for Feedback Linearization Control without Torque Measurements
Marco Capotondi (Private)

Giulio Turrisi (Sapienza, University of Rome)

Claudio Roberto Gaz (Sapienza Universita di Roma)

Valerio Modugno (Sapienza, university of Rome)*

Giuseppe Oriolo (La Sapienza)

Alessandro De Luca (Sapienza University of Rome)

1F-04

Learning from My Partner's Actions: Roles in Decentralized Robot Teams
Dylan P Losey (Stanford University)*

Mengxi Li (Stanford University)

Jeannette Bohg (Stanford)

Dorsa Sadigh (Stanford)




Dynamics Learning

.......................

Meta-Dynamics

Dynamics
s"~f(|s a)

Kinect2 Sensor

z~p(2) c~p(c)

s’~h(-|s c)

Goal Position

Figure 1: Hierarchical planning in latent spaces for multi-step manipulation tasks. The manipulation tasks shown
in the figure requires the robot to move the target object to a goal position through specified regions (marked by
grey tiles). In presence of an obstacle, the planner needs to move the obstacles aside and then move the target.
We propose to use three tightly coupled modules: dynamics model, meta-dynamics model and action generator
(see details in Sec. 3) to hierarchically generate plans for the task goal. Planning in learned latent spaces, our
method first predicts subgoals (yellow) and then generates plausible actions (blue). The optimal plan is chosen
by predicting resultant state trajectories (green) of the sampled actions. The selected plan is in darker colors.



[2B] Reinforcement Learning 1 (09h45 - 10h30)

Oral presentation (10 min presentation + 4 min QA)
Chair: Chelsea Finn (Stanford University)

2B-01
Worst Cases Policy Gradients
Charlie Tang (Apple Inc.)*

Re | nfo rceme nt Jian Zhang (Apple Inc.)

Russ Salakhutdinov (University of Toronto)

Learning 2602

Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
Noémie Jaquier (Idiap Research Institute)*

Leonel Rozo (Bosch Center for Artificial Intelligence)

Sylvain Calinon (ldiap Research Institute)

Mathias Buerger (BCAI)

2B-03

Graph Policy Gradients for Large Scale Robot Control
Arbaaz Khan (University of Pennsylvania)*

Ekaterina Tolstaya (University of Pennsylvania)

Alejandro Ribeiro (University of Pennsylvania)

Vijay Kumar (University of Pennsylvania)




Worst case RL

Table 3: Collision and (success rates) for
different o« in CARLA scenarios.

Unprotected Left Turn: (Town05)
a=0.2 a=0.5 a=1.0

0% (100%) 24% (76%) 42% (58%)

Merge: (Town04)
a=0.2 a=0.5 a=1.0

2% (83%) 4% (89%) 24% (76%)

Figure 7: CARLA scenarios. Left: 3D view. Right: top-down view.



Large-scale Robot Control
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Figure 1: Graph Policy Gradients. Robots are randomly initialized and, based on some user set
thresholds, a graph is defined. Information from K-hop neighbors is aggregated at each node by
learning local filters. These local features are then used to learn policies to produce desired behavior.

(a) y" (b)y' () y? d) y®

Figure 2: Graph Convolutional Networks. GCNs aggregate information between nodes and their
neighbors. For each k-hop neighborhood (illustrated by the increasing disks), record yy,, (Eq. 3) to
build z which exhibits a regular structure (Eq. 5). a) The value at each node when initialized and at
the b) one-hop neighborhood. ¢) two-hop neighborhood. d) three-hop neighborhood.



[2F] Reinforcement Learning 2 (14h00 - 15h00)

Oral presentation (10 min presentation + 4 min QA)
Chair: Jens Kober (TU Delft)

2F-01

Curious iLQR: Resolving Uncertainty in Model-based RL
Sarah M.E Bechtle (Max Planck Institute for Intelligent Systems)*
Yixin Lin (Facebook Al Research)

Akshara Rai (Facebook)

Ludovic Righetti (New York University)

Franziska Meier (Facebook Al Research)

2F-02
g MAT: Multi-Fingered Adaptive Tactile Grasping via Deep Reinforcement Learning
R e | n fO rC e m e n t Bohan Wu (Columbia University)*

. Iretiayo Akinola (Columbia University)
L 2 Jacob Varley (Google)
e a r n I n g Peter K Allen (Columbia University)

2F-03

Adversarial Active Exploration for Inverse Dynamics Model Learning
Zhang-Wei Hong (Preferred Networks)

Tsu-Jui Fu (UC Santa Barbara)

Tzu-Yun Shann (University of British Columbia)

Yi Hsiang Chang (National Tsing Hua University)

Chun-Yi Lee (National Tsing Hua University)*

2F-04

Multi-Agent Manipulation via Locomotion using Hierarchical Sim2Real
Ofir Nachum (Google)*

Michael Ahn (Google)

Hugo Ponte (Self)

Shixiang Gu (Google Brain)

vikash kumar (Google)




Multi-agent Manipulation

Avoid Push Coordinate

Figure 2: We consider three quadrupedal locomotion tasks of increasing complexity, utilizing the
D’Kitty robot (see Section 4.1 for details on this robot). From left to right, we present the simulated
(top row, using MuJoCo [13]) and real-world (bottom row) versions of the three tasks: Avoid, in
which the quadruped must walk to a target location while avoiding a block object; Push, in which a
quadruped must push a block object to a desired location; and Coordinate, in which two quadrupeds
coordinate to push a long block to a target location and orientation. We utilize HTC Vive controllers
and trackers to track the real-world position and orientation of agents, objects, and (for Avoid and
Push) the desired target locations.
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