

CS 3630!

Lecture 20:
Deep Learning

Topics

- 1. Supervised Learning
- 2. Convolutional Neural Networks
- 3. Learning CNN Parameters
- 4. Applications in Perception

Motivation

- Robotics:
 - · Perception, thinking, acting
- Deep learning has revolutionized perception
- Getting increasingly important in thinking/acting
- This lecture:
 - High-level intro to CNNs and learning for perception
- Next lecture:
 - Applications in robotics

1. Supervised Learning

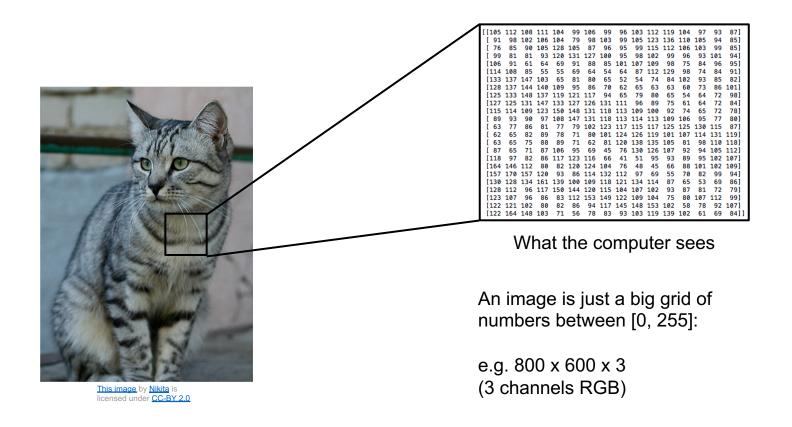
Example: classification

This image by Nikita is icensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

The Problem: Semantic Gap



An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

ML: A Data-Driven Approach

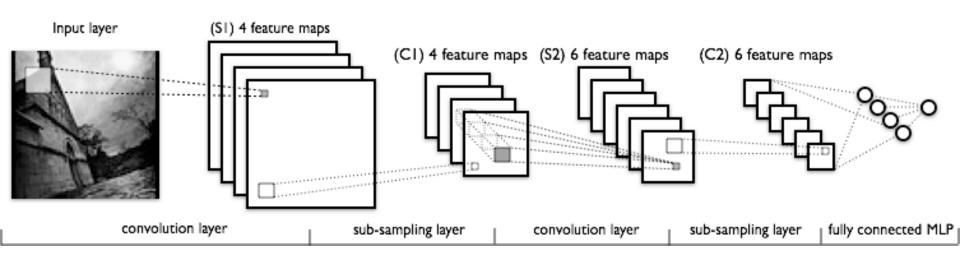
- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

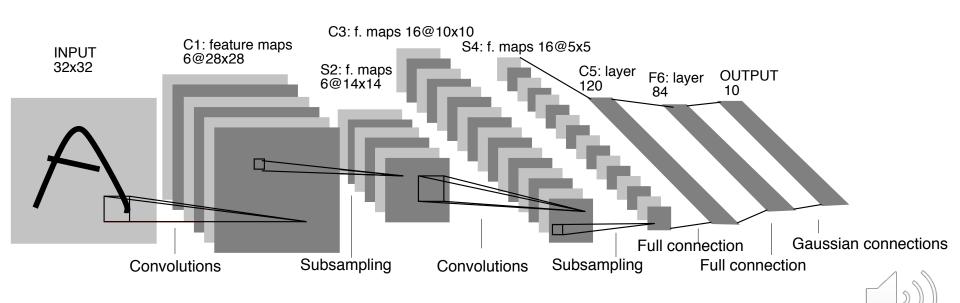
def train(images, labels): # Machine learning! return model

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

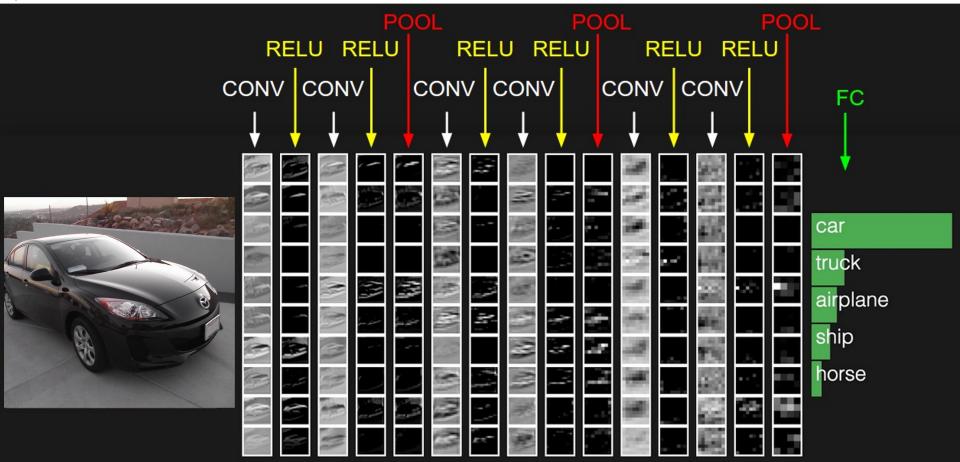
Example training set

2. Convolutional Neural Networks

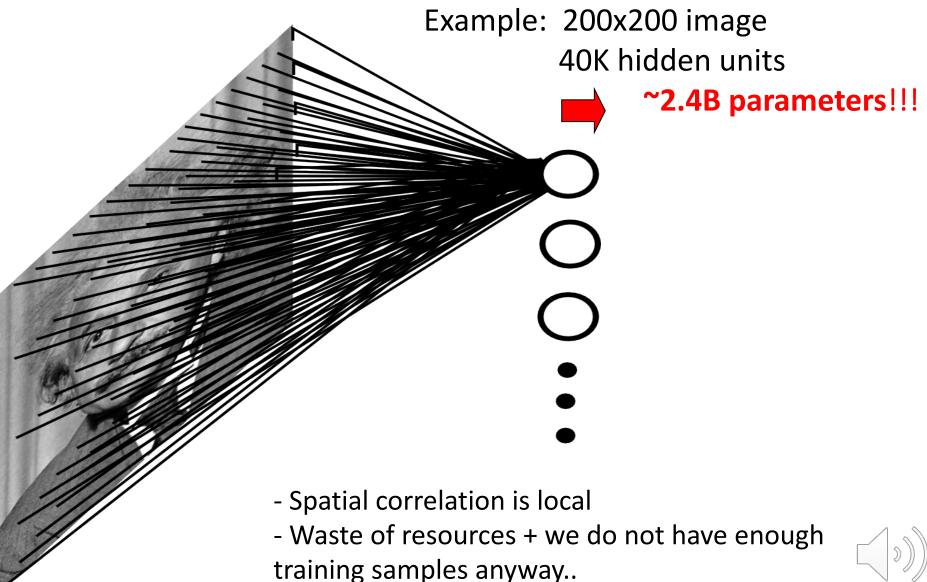


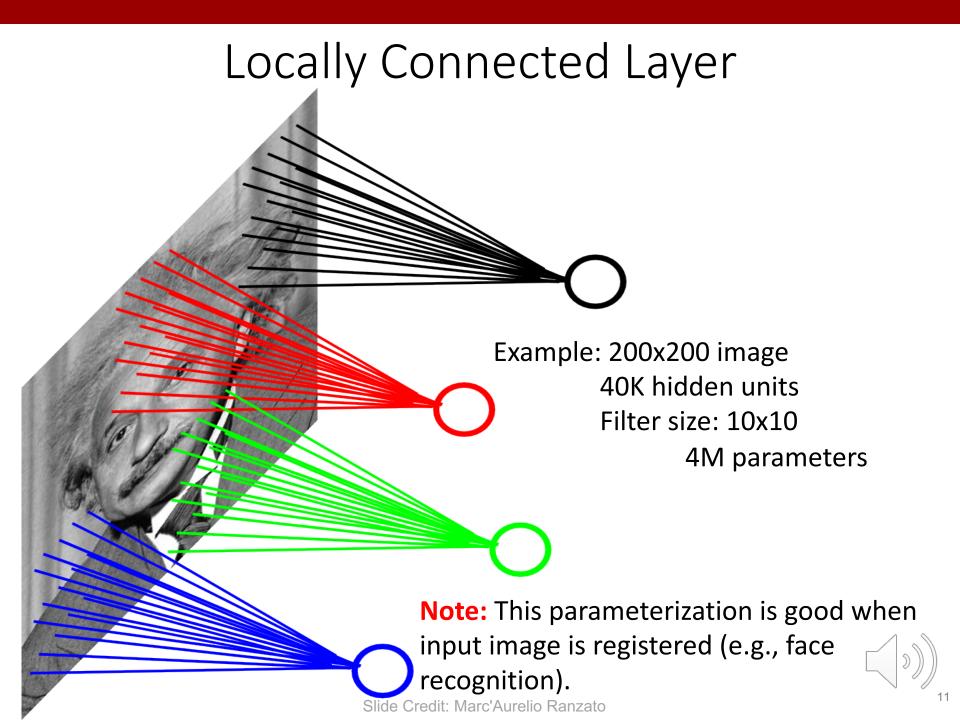


preview:

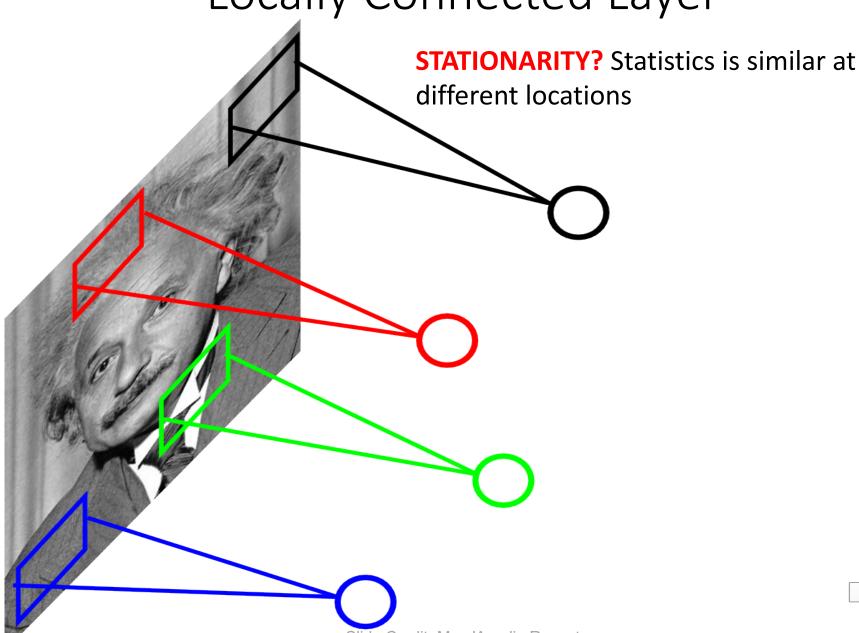


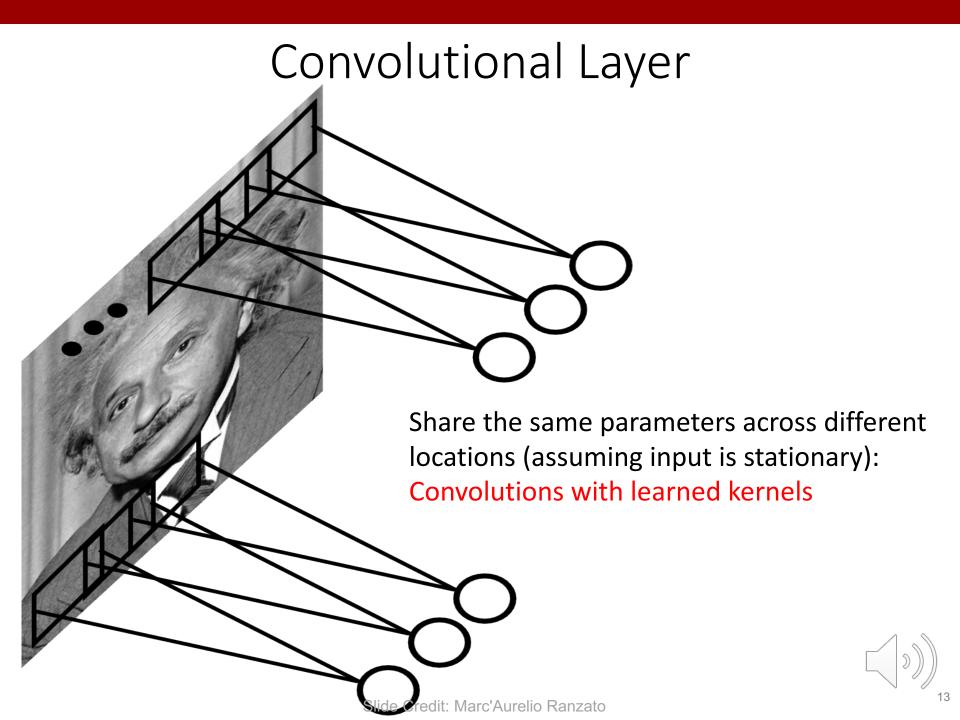
Fully Connected Layer



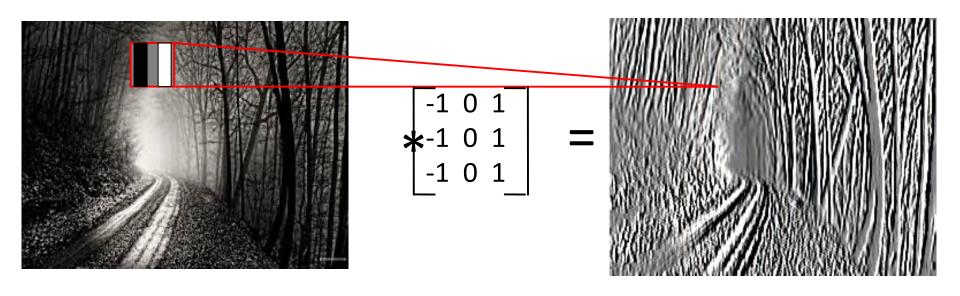


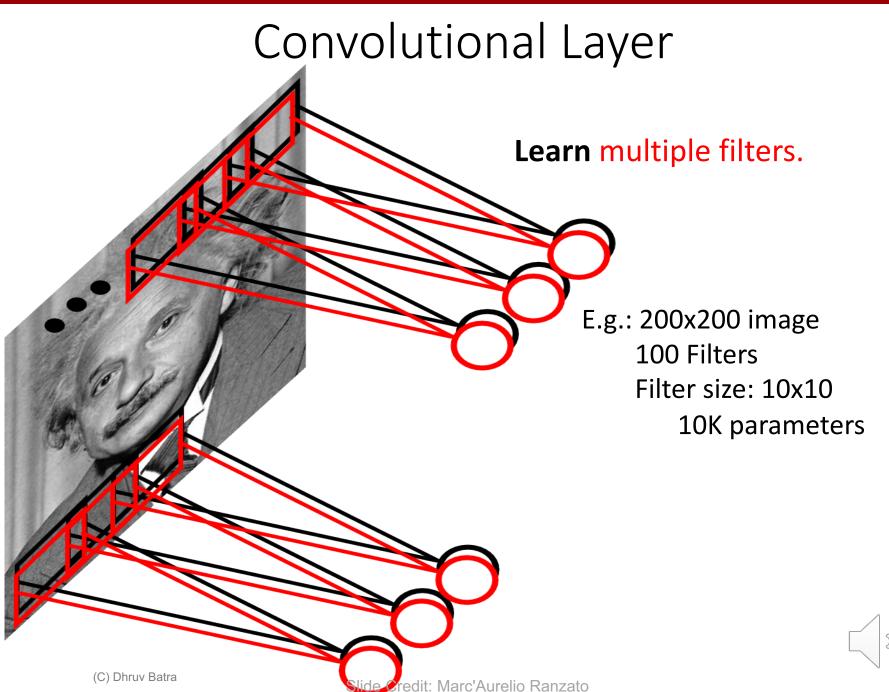
Locally Connected Layer





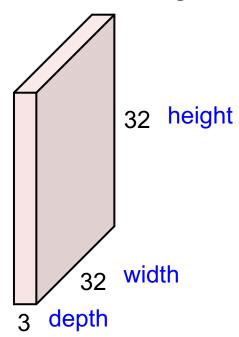
Convolutional Layer



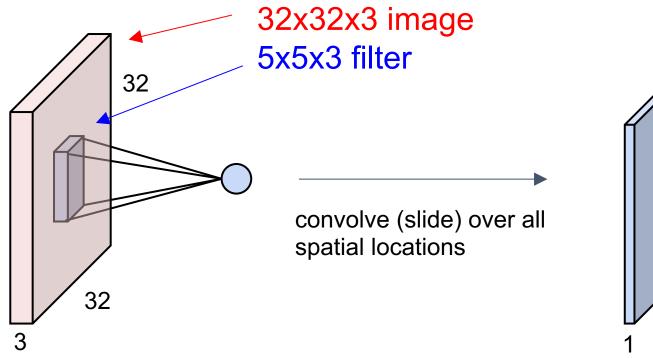


Convolution Layer

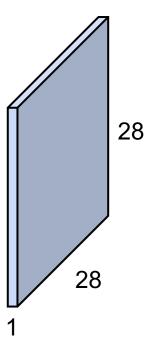
32x32x3 image -> preserve spatial structure



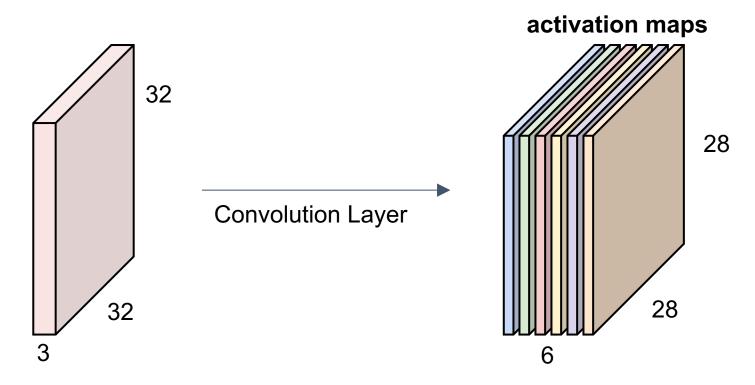
Convolution Layer



activation map

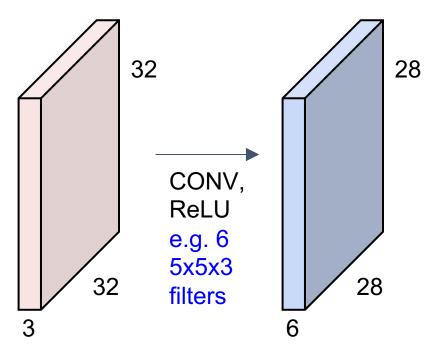


Multiple filters: if we have 6 5x5 filters, we'll get 6 separate activation maps:

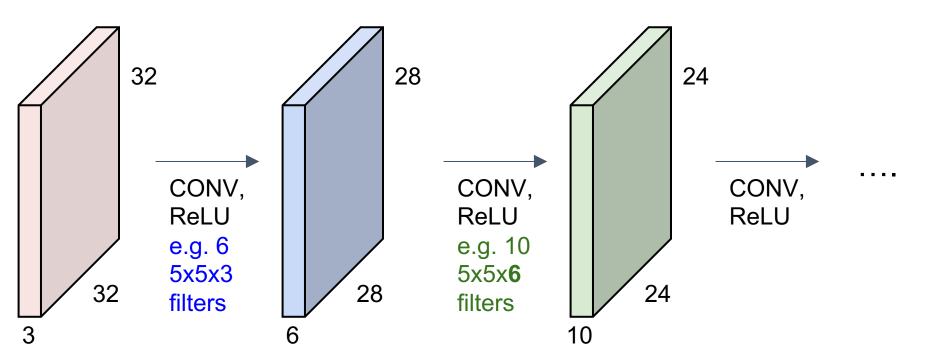


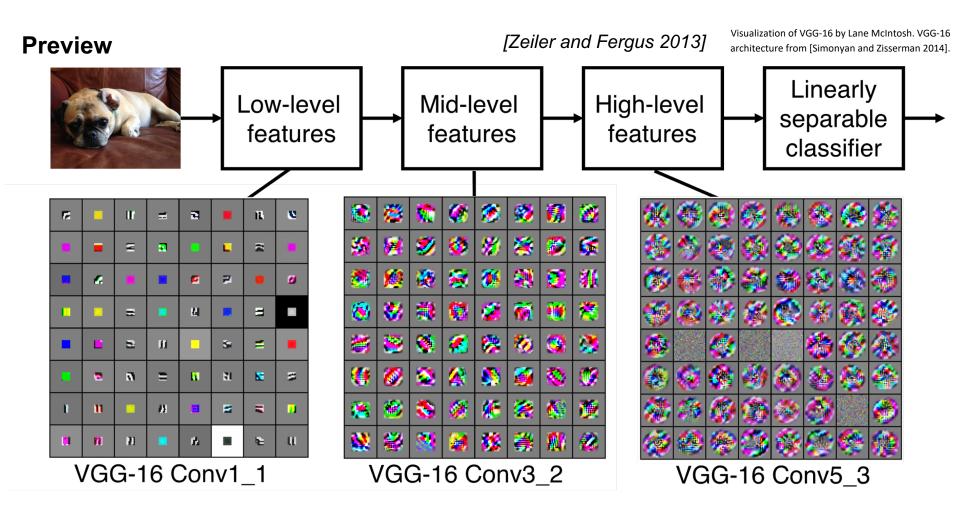
We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

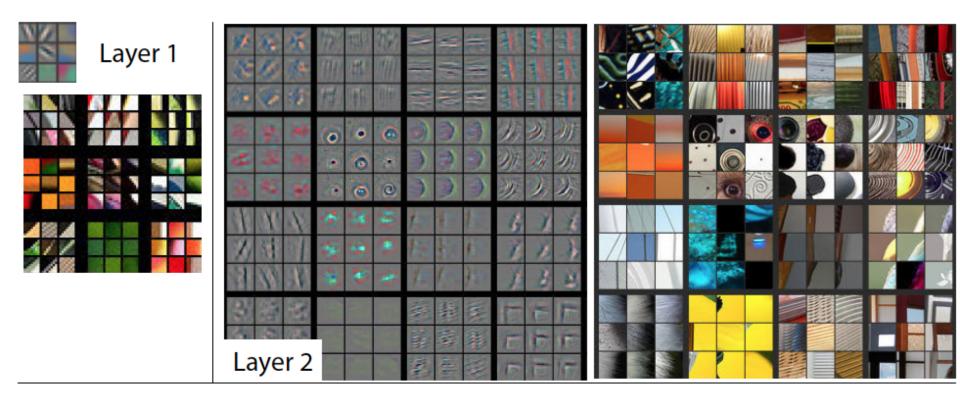


Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

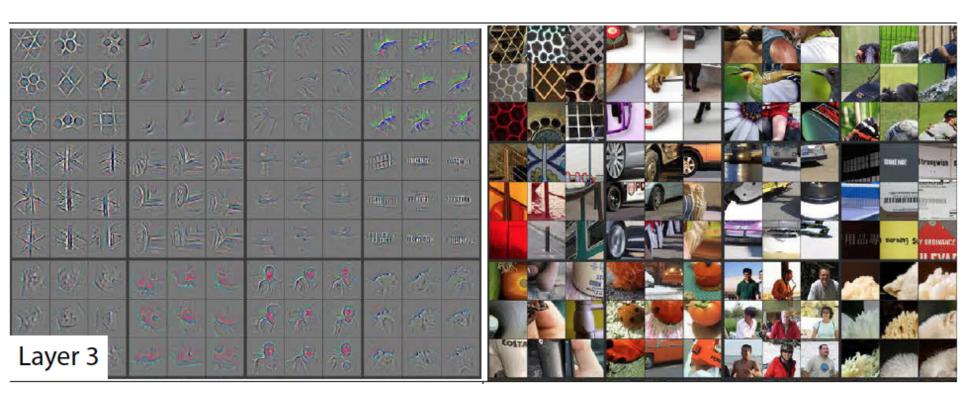


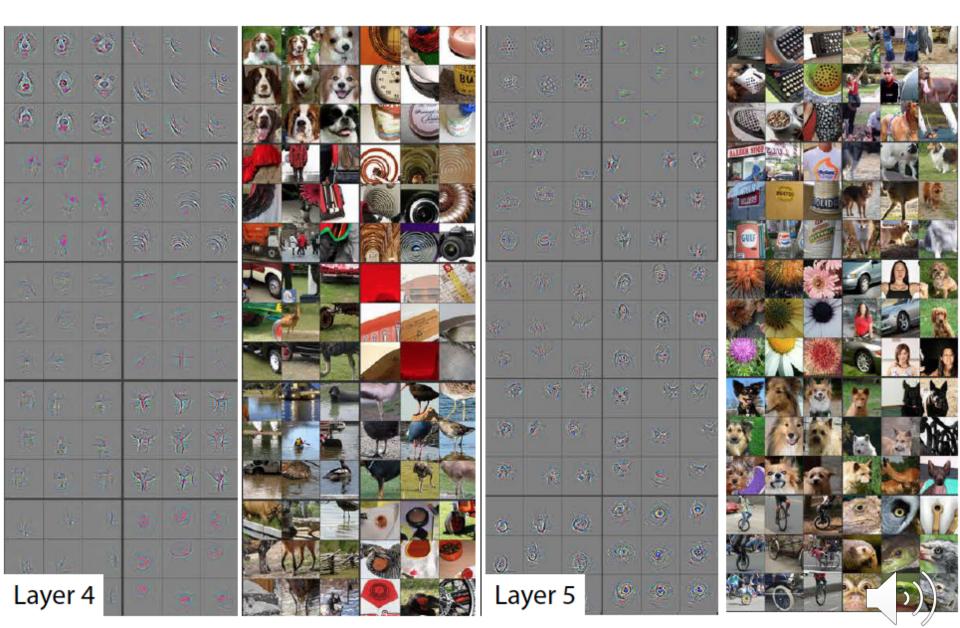


Visualizing Learned Filters



Visualizing Learned Filters

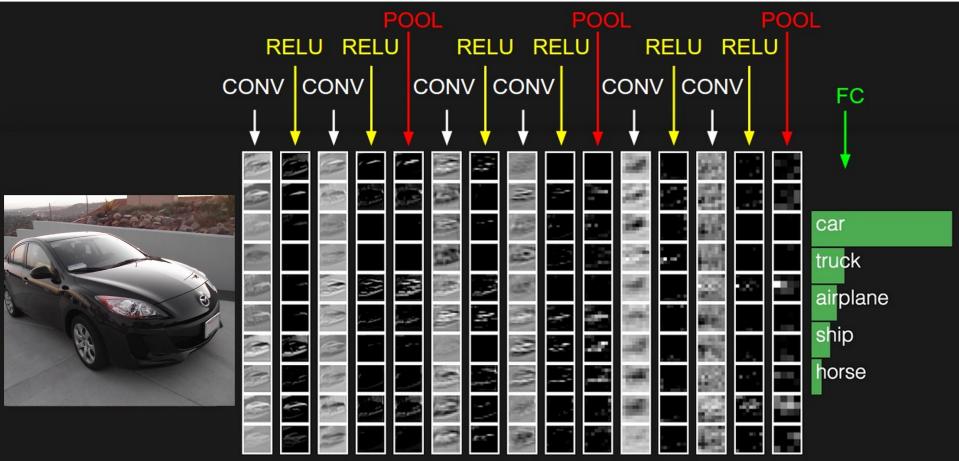


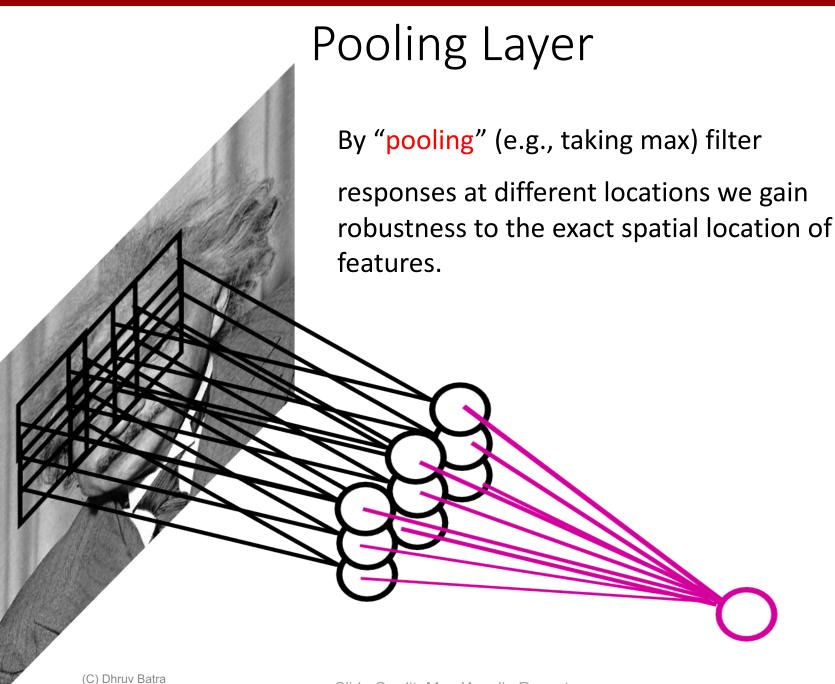


(C) Dhruv Batra

Figure Credit: [Zeiler & Fergus ECCV14]

two more layers to go: POOL/FC

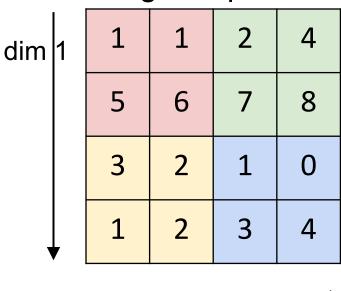




MAX POOLING

Single depth slice

dim 2

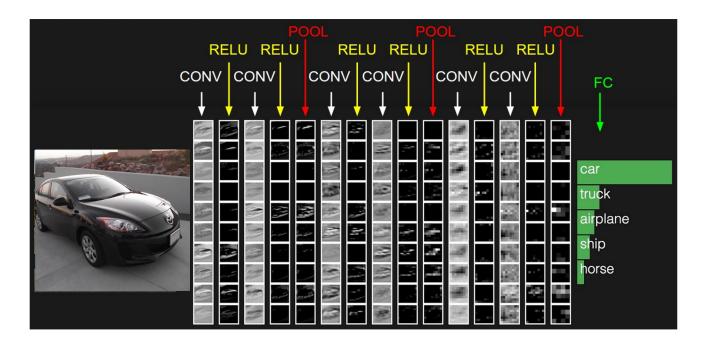


max pool with 2x2 filters and stride 2

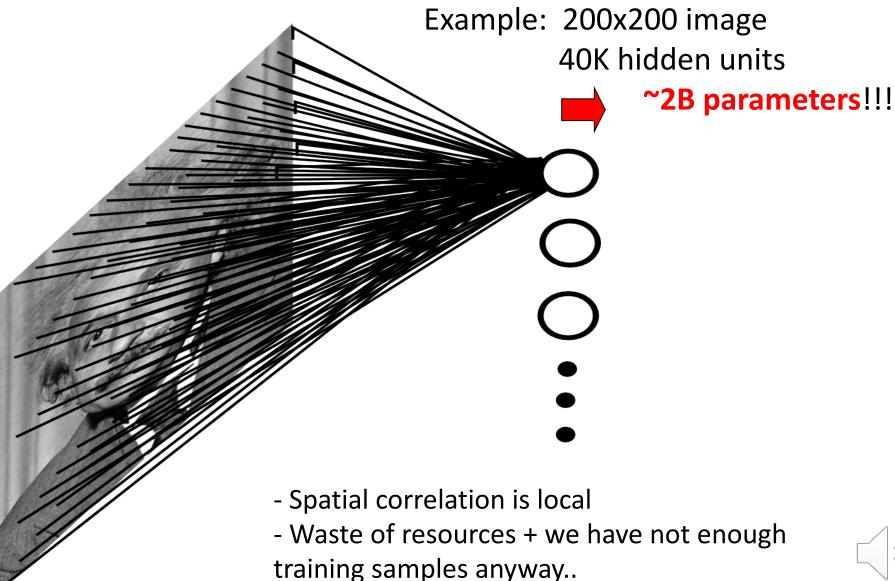
6	8
3	4

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks



Fully Connected Layer



3. Learning CNN Parameters

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

How to minimize the loss by changing the weights? Strategy: Follow the slope of the loss function

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

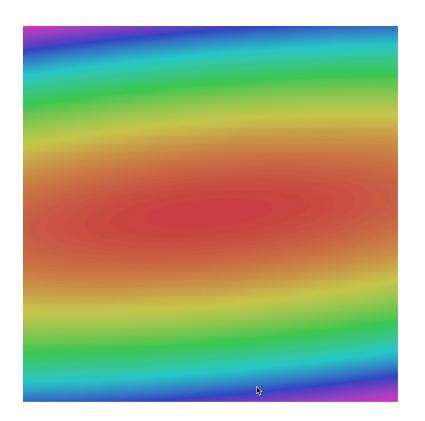
The slope in any direction is the **dot product** of the direction with the gradient

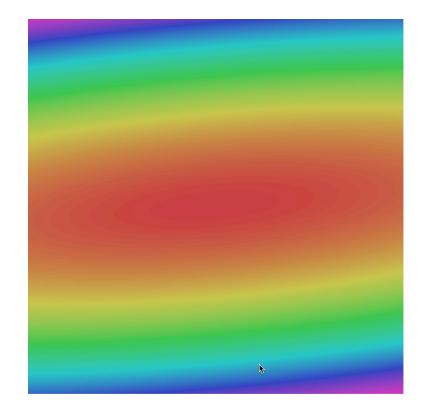
The direction of steepest descent is the negative gradient

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```



Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

 $\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Vanilla Minibatch Gradient Descent

```
while True:
```

```
data_batch = sample_training_data(data, 256) # sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update
```


How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation!
 - Forward mode AD
 - Reverse mode AD
 - aka "backpropagation"
 - Implemented in specialized frameworks:
 - pytorch (Facebook)
 - TensorFlow (Google) frameworks
 - Main computation, mainly done on GPU (or TPU)

4. Applications in Perception

- From pixels to concepts:
 - Image processing
 - Object classification
 - Object detection
 - Pixelwise segmentation

Colorization

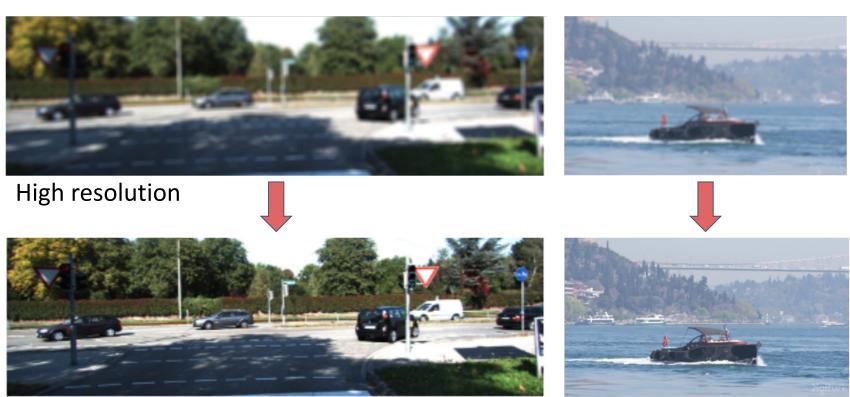
- Given a grayscale image, colorize the image realistically
- Zhang et al. pose colorization as classification task and use classrebalancing to improve results
- Demonstrate higher rates of fooling humans using "colorization Turing test"

Colorful Image Colorization. Richard Zhang, Phillip Isola, Alexei A. Efros. ECCV 2016.

DeOldify

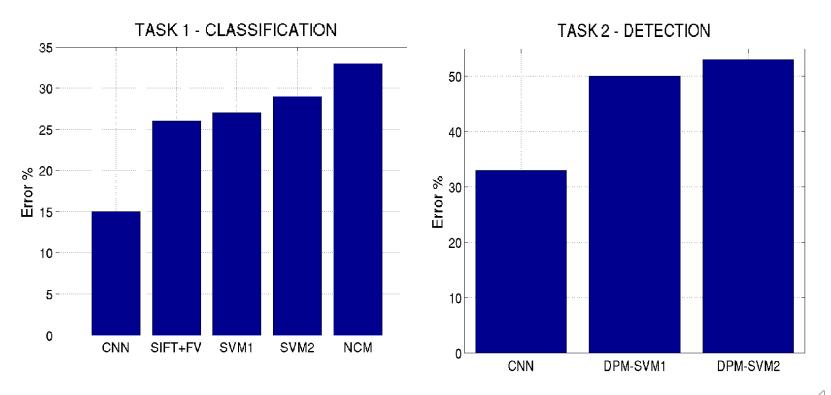
Super-Resolution

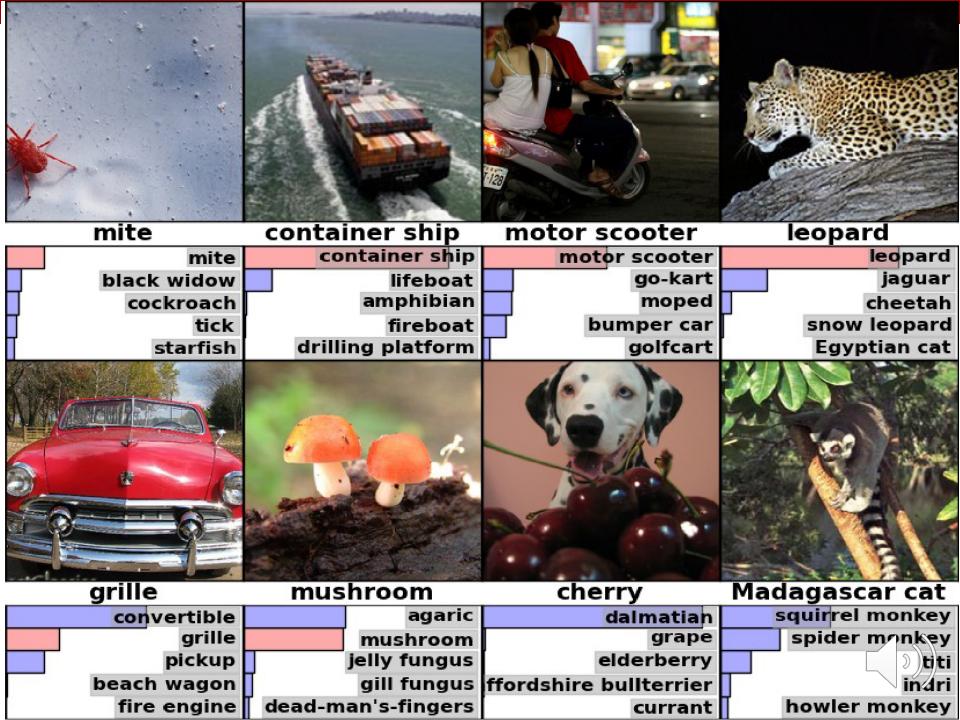
Low resolution



Object Classification Revolution

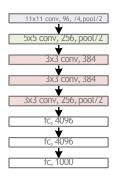
Results: ILSVRC 2012



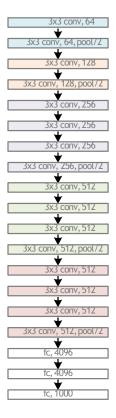


Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)



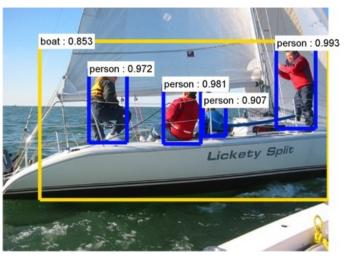
VGG, 19 layers (ILSVRC 2014)



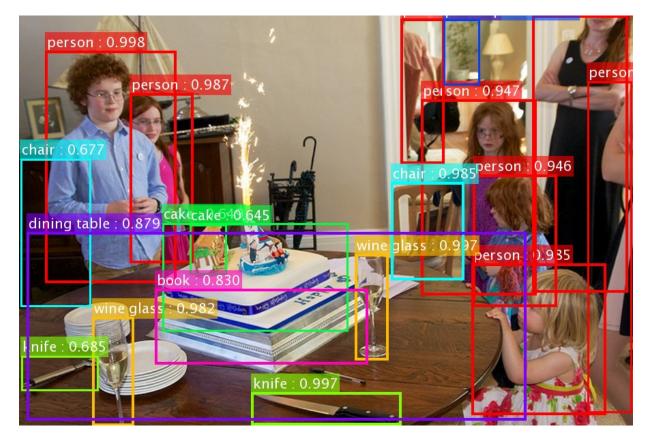
GoogleNet, 22 layers (ILSVRC 2014)

Object Detection

Image Classification (what?)



Object Detection (what + where?)

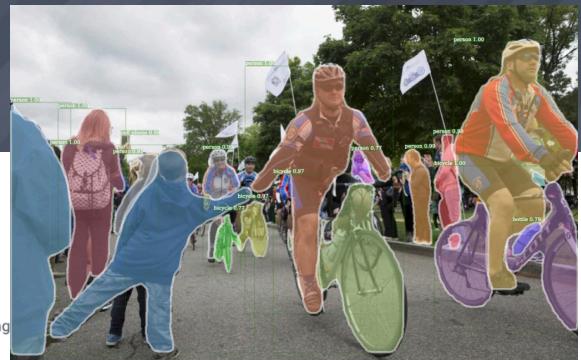


ResNet's object detection result on COCO

this video is available online: https://youtu.be/WZmSMkK9VuA

Results on real video. Models trained on MS COCO (80 categories). (frame-by-frame; no temporal processing)

Detectron



Detectron includes implementations of the following

- Mask R-CNN Marr Prize at ICCV 2017
- RetinaNet Best Student Paper Award at ICCV 2017
- Faster R-CNN
- RPN
- Fast R-CNN
- R-FCN

using the following backbone network architectures:

- ResNeXt{50,101,152}
- ResNet{50,101,152}
- Feature Pyramid Networks (with ResNet/ResNeXt)
- VGG16

Summary

- 1. Supervised Learning is where we learn from (lots) of labels
- 2. Convolutional Neural Networks are specialized multi-layer networks
- 3. Learning CNN Parameters can be done via stochastic gradient descent
- 4. Applications in Perception illustrate how well this works