
CS 3630
Motion Planning

for Cars

With lots of slides and ideas
from:

Howie Choset, Steve Lavalle,
Greg Hager, Zack Dodds,
Nancy Amato, Sonia Chernova,
James Kuffner

Path Planning – a quick review

• In robotics, the path planning problem consists of finding a collision-
free path from a start configuration to a goal configuration.

• The best algorithms known for this problem have time complexity
that increases exponentially in the dimension of the configuration
space.

• For robots with low-dimensional configuration spaces, we can often find
exact solutions.

• For robots with high-dimensional configuration spaces, we generally settle
for good approximate solutions, or notions like probabilistic completeness.

• The canonical path planning problem deals only with geometry;
dynamics (i.e., properties such as force or momentum) are not
considered. Considering dynamics can significantly increase the
complexity of planning algorithms.

• Cars are a special case: low-dimensional configuration space, but
dynamics matter.

◼ In general, motion planning is intractable.

◼ For certain special cases, efficient algorithms exist.

◼ Mobile robots that move in the plane are much
simpler than robot arms, mobile manipulators,
humanoid robots, etc.

◼ The main simplifying property is that we can often
treat path planning as a two-dimensional problem
for a point moving in the plane, 𝑥 ∈ ℜ2.

Mobile Robots

Roadmap methods

Capture the connectivity of the free space by a
graph or network of paths.

Roadmaps
A roadmap, 𝑅𝑀, is the union of one-dimensional curves such that
for all 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑔𝑜𝑎𝑙 that can be connected by a collision- free

path:

◼ Accessibility: There is a collision-free path connecting 𝑥𝑠𝑡𝑎𝑟𝑡 to
some point 𝑥1 ∈ 𝑅𝑀.

◼ Departability: There is a collision-free path connecting 𝑥𝑔𝑜𝑎𝑙 to

some point 𝑥2 ∈ 𝑅𝑀.

◼ Connectivity: There is a path in 𝑅𝑀 connecting 𝑥1 and 𝑥2.

If such a roadmap exists, then a free path from 𝑥𝑠𝑡𝑎𝑟𝑡 to 𝑥𝑔𝑜𝑎𝑙can

be constructed from these three sub-paths, and the path planning
problem can be reduced to finding the three sub-paths.

RoadMap Path Planning
1. Build the roadmap

a) nodes are points in the free space or its boundary

b) two nodes are connected by an edge if there is a free path
between them

2. Connect start end goal points to the road map
at point 𝑥1 and 𝑥2 , respectively

3. Find a path on the roadmap between 𝑥1 and 𝑥2

The result is a path from start to goal

Shortest, But Possibly Dangerous Paths

The Visibility Graph

Visibility Graph methods

• If there is there a path, then the shortest path is in the visibility graph
• If we include the start and goal nodes, they are automatically connected
• Algorithms for constructing them can be efficient

➢𝑂 𝑛3 brute force (i.e., naïve)
➢𝑂 𝑛2 log 𝑛 if clever

◼ Defined for polygonal obstacles
◼ Nodes correspond to vertices

of obstacles
◼ Nodes are connected if

◼ they are connected by an
edge on an obstacle

OR
◼ the line segment joining

them is in free space

Safe Paths that Have Large Clearance
to Obstacles

The Generalized Voronoi Diagram

Voronoi Diagrams

Generalized Voronoi Diagrams

A Discrete Version of the

Generalized Voronoi Diagram

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this

• need to define a grid on space

• need to define connectivity (4/8)

• obstacles start with a 1 in grid; free space is zero

4 8

Brushfire Algorithm

• Initially: create a queue 𝐿 of pixels on the boundary of all obstacles, set
𝑑 𝑡 = 0 for each non-boundary grid cell 𝑡

• While 𝐿 ≠ ∅

– pop the top element 𝑡 of 𝐿

– if 𝑑(𝑡) = 0

• 𝑑 𝑡 ← 1 + min
𝑡′∈𝑁 𝑡 ,𝑑 𝑡′ ≠0

𝑑(𝑡′)

• 𝐿 ← 𝐿 ∪ 𝑡′ ∈ 𝑁 𝑡 𝑑 𝑡 = 0} /* add unvisited neighbors to 𝐿

The result is a distance map 𝑑 where each cell holds the minimum distance to
an obstacle.

Local maxima of 𝑑 define the cells at which “wave fronts” cross, and these lie
on the discrete Generalized Voronoi Diagram.

Brushfire example

Note that the curves
here are not at all
perfect…

Path Planning for Large Empty Spaces

Cell Decomposition

Cell Decomposition

◼ Don’t explicitly build a 1-D Roadmap.

◼ The “Roadmap” corresponds to the adjacency
graph of the cellular decomposition.

◼ Nodes in the adjacency graph correspond to free
cells.

◼ Arcs in the adjacency graph connect nodes that
correspond to adjacent cells.

Definition

Qfree

Qfree

Adjacency Graph
◼ Node correspond to a cell

◼ Edge connects nodes of adjacent cells
◼ Two cells are adjacent if they share a common boundary

c11

c1

c2

c4

c3

c6

c5
c8

c7

c

10

c9

c12

c13

c14

c15

c1 c10

c2

c3

c4 c5

c6

c7

c8

c9

c11

c12

c13

c14

c15

Path Planning

◼ Path Planning in two steps:

◼ Planner determines cells that contain the start and goal

◼ Planner searches for a path within adjacency graph

Application to Cars?

• These algorithms are great for wheeled mobile robots. Typically

these robots

– Have dynamics that aren’t significant

– Can rotate in place, and therefore can arbitrarily change direction

– Inhabit buildings, college compasses, other environments where free

movement (i.e., not constrained to stay in a lane of a highway) is

allowed.

• Cars don’t have these properties, so these algorithms are

generally not useful when planning motions for cars.

Sampling-Based Methods
for Path Planning

Completeness

 Complete algorithm → Slow

◼ A complete algorithm finds a path if one exists and reports no otherwise

in finite time.

◼ Example: visibility graph for 2D problems (translation in the plane) and

polygonal robot and obstacles

 Heuristic algorithm → Unreliable

◼ Example: potential field (we’ll see it soon)

 Probabilistic completeness

◼ Intuition: If there is a solution path, the algorithm will find it with high

probability.

Probabilistic Roadmap (PRM):
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone

Assumptions

 Static obstacles

 Many queries to be processed in the same

environment

 Examples

◼ Navigation in static virtual environments

◼ Robot manipulator arm in a workcell

 Advantages:

◼ Amortize the cost of planning over many problems

◼ Probabilistically complete

Overview

Precomputation: roadmap construction

◼ Uniform sampling

◼ Resampling (expansion)

Query processing

Terminology
The graph G is called a probabilistic roadmap.

The nodes in G are called milestones.

Uniform sampling

Input: geometry of the moving object & obstacles

Output: roadmap G = (V, E)

1: V   and E  .

2: repeat

3: q  a configuration sampled uniformly at random from C.

4: if CLEAR(q)then

5: Add q to V.

6: Nq  a set of nodes in V that are close to q.

6: for each q’ Nq, in order of increasing d(q,q’)

7: if LINK(q’,q)then

8: Add an edge between q and q’ to E.

Why does it work? Intuition

 A small number of milestones almost “cover”

the entire configuration space.

 Rigorous definitions and exist (of course!)

Rapidly-Exploring Random Tree (RRT)

 Searches for a path from the initial configuration to the goal

configuration by expanding a search tree

 For each step,

◼ The algorithm samples a target configuration and expands the tree

towards it.

◼ The sample can either be a random configuration or the goal

configuration itself, depends on the probability value defined by the user.

Rapidly-Exploring Random Tree

The Basic Idea: Iteratively expand the tree

 Denote by 𝑇𝑘 the tree at iteration 𝑘

 Randomly choose a configuration 𝑞𝑟𝑎𝑛𝑑

 Choose 𝑞𝑛𝑒𝑎𝑟 = arg min
𝑞∈𝑇𝑘

𝑑(𝑞, 𝑞𝑟𝑎𝑛𝑑)

➢ 𝑞𝑛𝑒𝑎𝑟 is the nearest existing node in the tree to 𝑞𝑟𝑎𝑛𝑑

 Create a new node, 𝑞𝑛𝑒𝑤 by taking a small step from 𝑞𝑛𝑒𝑎𝑟 toward

𝑞𝑟𝑎𝑛𝑑

Path Planning with RRTs

BUILD_RRT (qinit) {

T.init(qinit);

for k = 1 to K do

qrand = RANDOM_CONFIG();

EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[Kuffner & LaValle , ICRA’00]

RRTs and
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Why are RRT’s rapidly exploring?

The probability of a node being selected for expansion (i.e. being a
nearest neighbor to a new randomly picked point) is proportional to
the area of its Voronoi region.

Articulated Robot

Highly Articulated Robot

Hovercraft with 2 Thusters

Out of This World Demo

Left-turn only forward car

Application to Cars?

 These algorithms are great for complex planning problems, and

can deal with

◼ Complex dynamic models

◼ Global planning problems

◼ Complex environments

 This is actually a more complicated scenario than a car typically

faces. For cars:

◼ Local motion planning is enough (don’t hit anything, stay on the road)

◼ Dynamics are fairly simple, and can often be modeled using purely

geometric approaches

◼ For a car, the search space for possible paths is highly constrained by the

nonholonomic wheel constraints (i.e., cars can’t move sideways).

◼ Path Planning should be very fast!

A modification to path planning…

 Driving with tentacles

Felix von Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre Mueller,
and Hans-Joachim Wuensche, 2008.

2
1

2
D Occupancy Grid (Elevation Map)

Occupancy grid value is computed to be the maximum difference of

𝑧 coordinates of points in 3D space falling into that grid cell.

 Laser running at 10Hz, 100,000 3D measurements per cycle.

 No history is used in the occupancy grid data

Tentacles

The range of speeds from 0 to 10 m/s is represented
by 16 speed sets, each containing 81 tentacles. Only
four of these sets are shown here. The tentacles are
circular arcs and start at the center of gravity of the

vehicle.

(a) The support area covers all cells within a distance 𝑑𝑠 of the tentacle.

(b) The classification area is a subset of the support area covering all cells
within a distance 𝑑𝑐 < 𝑑𝑠 of the tentacle.

The classification area must be free for the tentacle to be driveable. The
support area is preferred to be free.

Checking for Obstacles

The algorithm looks at 5 consecutive cells at a time (a sliding
window) and reports an obstacle if at least 2 of the cells are

occupied in the occupancy grid.

(b) shows the concept of classifying
tentacles as undrivable only in case of
being occupied within a speed-
dependent crash distance. In this case,
some drivable tentacles remain, allowing
a pass of the car.

The red points mark the locations along the tentacles where the vehicle would hit either
the car or the road border. As can be seen, no tentacle is free of obstacles.

(a) By neglecting the
distance to an obstacle, all
tentacles would be
classified undrivable.

Using tentacles to follow a path

For each tentacle, a score
value is computed by
considering the distance
and tangent orientations of
two corresponding points,
one on the tentacle and the
other on the (GPS)
trajectory to be followed.

Traffic situations

Three possible ways to go.
Handled well by a heuristic
that prefers tentacles that
are more similar to current
direction of motion.

Relying on the tentacle
algorithm alone would take
the car out into the
opposing traffic lane.
Needs to be combined with
additional safeguards.

Motion Planning for Cars

 The motion planning problem for cars is more complex than

planning paths for wheeled mobile robots, but less complex than

the general motion planning problem.

◼ Local planning will do the job.

◼ Car dynamics can be modeled well using geometric curves (i.e., no

explicit computations of force momentum).

◼ Collision checking is reduced to finding intersection of curves with

obstacles.

◼ A simple (2.5 D) map is a sufficiently rich representation of the

environment.

◼ No need for global maps, and no need for persistent representations.

