-
o
O
o
Yy
O

with LIDARS

Lecture 18
SLAM

Topics

LIDAR

Localization with LIDAR

PoseSLAM: SLAM with ICP

The PoseSLAM Factor Graph

MAP = MPE = Nonlinear Optimization
Optimization with GTSAM

o N R WNRE

Motivation

LIDAR = light detection and ranging

Key sensor in Autonomous Driving
* Used for localization
* First, need a map to localize in!

SLAM =
Simultaneous Localization and Mapping

Use Iterated Closest Points to relate scans
Use optimization over SE(2) to do SLAM

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

1. LIDAR

 —
BERATCCOM/CAR

ADVANCED

TECHNOLOGIES ﬁ]\
L

* Superpowers: SN 5D N @7
* 360 Visibility | e
* Accurate depth!

* Almost all AV prototypes
have them (not all 360)

Images and exposition take from
excellent Voyage Blog post

<)

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

LIDAR Basic Principle

d=(Etxc) Where ¢ = speed of light

2

* Send a light pulse
* Measure elapsed time Et
* Infer distance d

Images and exposition 1;.\ Lf:'qm

excellent Voyage Blog posf

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Example

Images and exposition take from
excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

2. Localization with LIDAR

* |CP = Iterated Closest Points:
e Call current scan S, map M

* Predict pose from motion model:
use other sensors if available

* |terate:
* For every point s: find closest m
* Re-estimate pose

* In practice:

* outlier rejection to account for moving Image Credits: Innoviz
objects, unmodeled structures, parked
cars etc...

Learning to Localize Using a LiDAR Intensity Map

Ioan Andrei Birsan*'? Shenlong Wang™-!> Andrei Pokrovsky' Raquel Urtasun'2

[] []
1Uber ATG, 2University of Toronto
{andreib, slwang, andrei, urtasun}Quber.com
Abstract: In this paper we propose a real-time, calibration-agnostic and effective
localization system for self-driving cars. Our method learns to embed the online

LiDAR sweeps and intensity map into a joint deep embedding space. Localiza-
tion is then conducted through an efficient convolutional matching between the
embeddings. Our full system can operate in real-time at 15Hz while achieving
centimeter level accuracy across different LIDAR sensors and environments. Our

experiments illustrate the performance of the proposed approach over a large-scale

e E .8., rece nt paper fro m U be r ATG dataset consisting of over 4000km of driving.

. . . . K ds: D Learning, Localization, Map-based Localizati
 “reliable and accurate localization remains an open problem,” YRR T e, Toction, Tp e e

* “[ICP] can lead to high-precision localization, but remain vulnerable in the ! Introduction

presence Of geometnca”y non_d|st|nct|ve orre pet|t|ve enV|r0nments SUCh as One of the fundamental problems in autonomous driving is to be able to accurately localize the
. . ” ’ vehicle in real time. Different precision requirements exist depending on the intended use of the
tu nne I S) h | ghwayS) or b rl dgeS localization system. For routing the self-driving vehicle from point A to point B, precision of a few

meters is sufficient. However, centimeter-level localization becomes necessary in order to exploit
high definition (HD) maps as priors for robust perception, prediction, and safe motion planning.

Despite many decades of research, reliable and accurate localization remains an open problem, es-
pecially when very low latency is required. Geometric methods, such as those based on the iterative
closest-point algorithm (ICP) [1, 2] can lead to high-precision localization, but remain vulnerable in
the presence of geometrically non-distinctive or repetitive environments, such as tunnels, highways,
or bridges. Image-based methods [3, 4, 5, 6] are also capable of robust localization, but are still
behind geometric ones in terms of outdoor localization precision. Furthermore, they often require
capturing the environment in different seasons and times of the day as the appearance might change
dramatically.

arget Mop : Online Sweep Localization Results

A promising alternative to these methods is to leverage LiDAR intensity maps [7, 8], which encode
information about the appearance and semantics of the scene. However, the intensity of commercial
. y LiDARSs is inconsistent across different beams and manufacturers, and prone to changes due to envi-
5 m lLon-80F-mt) : - ronmental factors such as temperature. Therefore, intensity based localization methods rely heavily

s Do) % - on having very accurate intensity calibration of each LIDAR beam. This requires careful fine-tuning
of each vehicle to achieve good performance, sometimes even on a daily basis. Calibration can be

(c) Reverse para]]e] parklng a very laborious process, limiting the scalability of this approach. Online calibration is a promising
- . - — solution, but current approaches fail to deliver the desirable accuracy. Furthermore, maps have to be
Online Sweep = o , : re-captured each time we change the sensor, e.g., to exploit a new generation of LiDAR.

In this paper, we address the aforementioned problems by learning to perform intensity based lo-
calization. Towards this goal, we design a deep network that embeds both LiDAR intensity maps
and online LiDAR sweeps in a common space where calibration is not required. Localization is
then simply done by searching exhaustively over 3-DoF poses (2D position on the map manifold
plus rotation), where the score of each pose can be computed by the cross-correlation between the
embeddings. This allows us to perform localization in a few milliseconds on the GPU.

vz

We demonstrate the effectiveness of our approach in both highway and urban environm~ jts over

4000km of roads. Our experiments showcase the advantages of our approach over tredi*” |l me\y- ||
ods, such as the ability to work with uncalibrated data and the ability to generalize {' iff brej 1t ||
LiDAR sensors. /)]

(d) A Sham turn 1nto an intersection. 2nd Conference on Robot Learning (CoRL 2018), Ziirich, Switzerland.

3. SLAM

* Mapping runs drive all accessible streets
* Record LIDAR, GPS, IMU (gyro + accel)

e SLAM: Simultaneous Localization and Mapping
* Given a map, we can localize

* Given accurate localization, we can build a map!
e Do it simultaneously!

* HD-Map: point clouds + annotations

aaat

PoseSLAM:
SLAM with ICP

* One way: PoseSLAM:
* Do ICP between overlapping scans
* Can use GPS/IMU to decide which scans overlap
* Optimize for 3D or 2D poses only

* Re-construct HD map from laser-scans
afterwards

P "' L
}' 7 f .'IH

<)

360.here.com

4. The PoseSLAM Factor Graph

i fa(Ty, T5)
* Pose constraint = Factor 1 —e 5 (1
* MPE: maximize posterior
f5(T5,12) @ ® [f3(15,T4)
o(T) =]]i(Ti)
- () () (;
7 ® Ty @ 15 @ T3
fo(Th) —/ fi(Th,T3) —/ f2(T3,T5)

* In the example:
* 4 constraints by matching successive scans
* 1 “loop closure” constraint
* 1 "anchor” factor to give unique solution

Linear Least Squares

* |f two assumptions hold:
* measurement function is linear
* Noise is zero-mean Gaussian

1 1 AN
Mo = o {1 (5)')

fa(Ty, T5)
TSJ @ \T4
f5(15,T2) @ ® [f3(15,T4)
() () (-
® Tl @ T2 @ T3
fo(Th) —/ fi(Th,T3) —/ f2(T3,T5)

Linear Least Squares

* |f two assumptions hold: f(T3, T)
. . . 15 @ Ty
e measurement function is linear) S
* Noise is zero-mean Gaussian
f5(T5,1>) @ ® f3(13,1y)
9 1 1 [z —p\?
M) = e {1 (224)
2702 2\ o () () (71
o Ty @ @ o Ts
fo(T1) f1(Th, T3) f2(T2,T3)

* Then we can solve via linear least squares.

* Example: x-coordinates only, minimize prediction error:

) 1 1 .
Tij = h(z;z;) =x; —z; ¢(r4,25) = —== exp {—— (zj — @i — f’%‘j)Q}

V2 2
X* = arg 111{1,112

k

—

~ ‘ et - l -~ :
(h(zi,x;) — J',-j)“) = arg 111’(1_112 5 (T — =i — J'ij)z
¢ l" —

DO | b

Pose constraints are nonlinear!

. . fa(Ty,T:
* Measurement prediction: 1) (. ! (m
hT;,T;) =TT,
(v ‘7) ¢ J f5(T5,T>2) @ ® f3(13,1})
e Measurement error: o (7)o (1. o— (1
fo(Ty) U f1(1y,Ts) U fa(T,T3)

1 5171 2

5 |08 (757773

* Here log! is a magic function converting a
pose to three numbers & = (dx, oy, 06)
that measure how far a pose is from the origin

Ltechnically, matrix logarithm, the inverse of the matrix exponential exp.

5. MAP = MPE = Nonlinear Optimization

* Two different approaches:

* Rotation averaging: first find rotations .
consistent with the measurements, 5
then recover the translations linearly as
discussed above. Sub-optimal, but a
good initial estimate for...

* Nonlinear minimization: locally linearize
the problem and solve the

corresponding linear problem using - %
least-squares, and iterate this until minimum -65\'--\(/‘? o S
convergence % o 3 o

Image credit Tamas Terlaky

https://www.researchgate.net/profile/Tamas_Terlaky

Incremental Pose Parameters

* Given an estimate for a pose, we can update it via

T ~TA(¢)
1 =00 | oz
& = (0x, 0y, 00) A)=| 660 1 |dy
0 0 I

e With this we can approximate each factor Iineérly:

Hlog(A7 1T)H \A&JrAﬁj b|”

* Small print: For small increments, this works well, although we have to make sure to re-normalize the rotation afterwards. B
In practice, GTSAM uses something that holds even for large increments (an exponential map). B

Solving a succession of linear problems

Summary:

e Start with an initial estimate 7

e [terate:

1. Linearize the factors 3 ||log (i Ty) H ~ 3 || A& + A& — b|*

2. Solve the least squares problem =* = argming) _, 5 | Agi&i + Ak;& — kaQ

3. Update T/ ™! « TIA(E)

2
e Until the nonlinear error J(7) = >, 5 Hlog (1T 7.) ” converges.

D)

6. Optimization with GTSAM

GISAM 4.0

Factor graphs for Sensor Fusion in Robotics.

* The GTSAM toolbox (Georgia Tech Smoothing and Mapping) toolbox is
a BSD-licensed C++ library based on factor graphs

* Website at http://gtsam.org.
 GTSAM exploits sparsity to be computationally efficient.

http://gtsam.org/

C++ Example

fa(T4, T5)
f5(15,12) @
() ()
@ Th @ T @
fo(Ty) P f1(Th, Tz) N/ f2(T2,T3)

NonlinearFactorGraph graph;

auto priorNoise = noiseModel::Diagonal::Sigmas((Vector(3)<< 0.3, 0.3, 0.1))
graph.add (PriorFactor<Pose2>(1, Pose2(0,0,0),

// Add odometry factors

priorNoise));

auto model = noiseModel::Diagonal::Sigmas((Vector(3)<< 0.2, 0.2, 0.1));

graph.add (BetweenFactor <Pose2>(1,
graph.add (BetweenFactor <Pose2>(2,
graph.add (BetweenFactor <Pose2>(3,
graph.add (BetweenFactor <Pose2>(4,

// Add pose constraint
graph.add (BetweenFactor <Pose2>(5,

’

2
3,
4,
5

b

2,

Pose2 (2,
Pose2 (2,
Pose2 (2,
Pose2 (2,

Pose2 (2,

0,

0,
0,
0

b

0,

0),
M_PI_2),
M_PI_2),
M_PI_2),

M_PI_2),

model)) ;
model)) ;
model)) ;
model)) ;

model)) ;

Python Example o ulG

f5(T5,12) @ ® f3(13,Ty)

() () (7
[Th @ T o T
fo(Ty) P f1(Th, Tz) —/ f2(T2,T3) Q

graph = gtsam.NonlinearFactorGraph ()

priorNoise = gtsam.noiseModel_Diagonal.Sigmas(vector3 (0.

3, 0.3, 0.1))

graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), priorNoise))

Create odometry (Between) factors between consecutive

model = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.2, O.

graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2,
graph.add(gtsam.BetweenFactorPose2(2, 3, gtsam.Pose2(2,
graph.add(gtsam.BetweenFactorPose2(3, 4, gtsam.Pose2(2,
graph.add(gtsam.BetweenFactorPose2(4, 5, gtsam.Pose2(2,

Add the loop closure constraint
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2,

poses

2, 0.1))

0, 0), model))

0, pi/2), model))
0, pi/2), model))
0, pi/2), model))

-

-

0, pi/2), model))

NI

Optimization In

Python

10
11
12

T T T T T T T T
2.5~
2k « e
1.5
1.;
0.5
o *
-0.51-
1 1 | 1 1 1 1 L | |
-0.5 0 0.5 1 1.5 2 25 3 35 4 4.5

Create the initial estimate
initial_estimate = gtsam.Values ()

initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial_estimate.insert (3, gtsam.Pose2(4.1, 0.1, pi/2))
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi/2))

Optimize the initial values using a Gauss-Newton nonlinear optimizer
optimizer = gtsam.GaussNewtonOptimizer (graph, initial_estimate)

result = optimizer.optimize ()

print ("Final Result:\n{}".format (result))

Summary

LIDAR is a key sensor for autonomous driving

Localization can be done with LIDAR, or image-based
PoseSLAM: a SLAM variant using ICP pose constraints

The PoseSLAM factor graph graphically shows the constraints
MAP/MPE solution can be done via nonlinear optimization

A A S

GTSAM is an easy way to optimize over poses in C++/MATLAB/python

