

CS 3630!

Lecture 14:
Computer Vision
Fundamentals

Topics

- 1. What is Computer Vision?
- 2. Applications of CV
- 3. Images as 2D arrays
- 4. Basic Image Processing
- 5. Image Filtering

- Many slides borrowed from James Hays, Irfan Essa, and others.
- Intro CV course: CS 4476
 - This spring: Judy Hoffmann
 - Coming Fall: Frank Dellaert

Motivation

- Robots need to act in the world
- One of the cheapest and richest sensors is a camera
- Unfortunately, understanding camera images is not easy
- Since the sixties, researchers have tried to tackle this problem
- Since 2012, deep learning has led to incredible progress
- Perception for robotics is following closely behind

1. What is Computer Vision?

Computer Graphics: Models to Images

Comp. Photography: Images to Images

Computer Vision: Images to Models

Computer Vision

Make computers understand images and video or any visual data.

What kind of scene?

Where are the cars?

How far is the building?

. . .

Vision is really hard

- Vision is an amazing feat of natural intelligence
 - Visual cortex occupies about 50% of Macaque brain
 - One third of human brain devoted to vision (more than anything else)

Why computer vision matters

Safety

Health

Security

Comfort

Fun

Robotics

Ridiculously brief history of computer vision

- 1966: Minsky assigns computer vision as an undergrad summer project
- 1960's: interpretation of synthetic worlds
- 1970's: some progress on interpreting selected images
- 1980's: ANNs come and go; shift toward geometry and increased mathematical rigor
- 1990's: face recognition; statistical analysis in vogue
- 2000's: broader recognition; large annotated datasets available; video processing starts
- 2010's: Deep learning with ConvNets
- 2020's: Widespread autonomous vehicles?
- 2030's: robot uprising?

Ohta Kanade '78

Turk and Pentland '91

2. Applications of Computer Vision

- Examples of real world applications
- Emphasis on Robotics

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

License plate readers

http://en.wikipedia.org/wiki/Automatic number plate recognition

Face detection

 Digital cameras (you know these as "phones") detect faces

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story wikipedia

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now widely in use on smartphones

Object recognition (in mobile phones)

E.g. Google Lens

iNaturalist

https://www.inaturalist.org/pages/computer_vision_demo

Special effects: shape capture

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

http://www.sportvision.com/video.html

Medical imaging

3D imaging MRI, CT

Image guided surgery
Grimson et al., MIT

Slide content courtesy of Amnon Shashua

Smart cars

- Mobileye
 - Market Capitalization: 11 Billion dollars
 - Bought by Intel for 15 Billion dollars

Waymo

"Google Cars Drive Themselves, in Traffic". <u>The New York Times</u>. John Markoff "Nevada state law paves the way for driverless cars". <u>Financial Post</u>. Christine Dobby "Human error blamed after Google's driverless car sparks five-vehicle crash". *The Star* (Toronto)

Interactive Games: Kinect

- Object Recognition: http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
- Mario: http://www.youtube.com/watch?v=8CTJL5|UjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Augmented Reality and Virtual Reality

Magic Leap, Oculus, Hololens, etc.

Industrial robots

Vision-guided robots position nut runners on wheels

Computer Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Amazon Prime Air

https://www.amazon.com/b?node=8037720011

3. Images as 2D Arrays

Image Acquisition Pipeline

Analog (incoming light) to digital (pixels)

A Digital Image (W X H)

A Digital Image!

- * Numeric representation in 2-D (x and y)
- * Referred to as I(x,y) in continuous function form, I(i,j) in discrete
- * Image Resolution: expressed in terms of Width and Height of the image

Pixel

A "picture element" that contains the light intensity at some location (i,j) in the image

I(i,j) = Some Numeric Value

Characteristics of a Digital Image

- * A two-dimensional array of pixels and respective intensities
- * Image can be represented as a Matrix
- * Intensity Values range from 0 = Black to 255 = White

Common data types

Data types used to store pixel values:

- unsigned char
- uint8
- unsigned char 8bit
- $\cdot 2^{n}$ (2¹, 2², 2⁴, 2⁸, etc.)

Digital Image Formats

Images can also be 16, 24, 32 bits-per-pixel:

- 24 bits per pixel usually means 8 bits per color
- At the two highest levels, the pixels themselves can carry up to 16,777,216 different colors

Common raster image formats:

• GIF, JPG, PPM, TIF, BMP, etc.

Digital Image is a Function

Digital Image is a Function

Digital Image is a Function

	Managed Managed Annual					
	100	120	121	122	30	40
	120	120	121	122	70	40
V	60	50	40	41	7	8
	100	120	121	122	1	0
	200	120	200	122	12	14
	200	220	225	250	30	40

- Typically, the functional operation requires discrete values
 - Sample the two-dimensional (2D) space on a regular grid
 - Quantize each sample (rounded to "nearest integer")
- Matrix of integer values (Range: 0-255)

Digital Image Statistics

- Image statistics average, median, mode
 - Scope entire image or smaller windows/regions
- Histogram distribution of pixel intensities in the image
 - Can be separate for each channel, or region-based too

Color Digital Image: An Example

Color Red Channel Green Channel Blue Channel

- Color image = 3 color channels (images, with their own intensities) blended together
- Makes 3D data structure of size: Width X Height X Channels
- Each pixel has therefore 3 intensities: Red (R), Green (G), Blue (B)

4. Basic Image Processing

- Contrast
- Brightness
- Gamma
- Histogram equalization
- Arithmetic
- Compositing

Contrast

•
$$g(x) = a f(x), a=1.1$$

Brightness

•
$$g(x) = f(x) + b, b=16$$

Gamma correction

$$g(\boldsymbol{x}) = [f(\boldsymbol{x})]^{1/\gamma}$$

• gamma = 1.2

Histogram Equalization

- Non-linear transform to make histogram flat
- Still a per-pixel operation g(x) = h(f(x))

Point-Process: Pixel/Point Arithmetic

120	122	140	142	143
121	120	141	144	147
122	121	144	146	11
125	121	144	145	10
126	121	145	147	13

120	122	140	142	143
121	120	141	144	147
122	121	144	146	11
125	121	144	145	10
126	121	145	147	13

120	122	140	142	143
121	80	40	144	10
122	81	40	0	151
125	80	40	0	152
126	70	40	0	153

120	122	140	142	143
121	80	40	144	10
122	81	40	0	151
125	80	40	0	152
126	70	40	0	153

240	244	280	284	286
121	200	181	288	157
122	202	184	146	162
125	201	184	145	164
126	191	185	147	166

0	0	0	0	0
0	40	101	0	137
0	40	104	146	-140
0	40	104	145	-142
0	191	185	147	-140

Pixel/Point Arithmetic: An Example

Matte: an alpha image

aF

(1-a)B

KeyMix: aF + (1-a)B

5. Image Filtering

Image filtering: compute function of local neighborhood at each position

- Very important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching
 - Deep Convolutional Networks

Example: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Smoothing with box filter

Median filters

- A **Median Filter** operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

© 2006 Steve Marschner • 65

Comparison: salt and pepper noise

© 2006 Steve Marschner • 66

Summary

- 1. Computer Vision defined
- 2. Applications of CV are plentiful!
- 3. Images are 2D arrays of pixel values
- 4. Basic image processing: contrast, intensity, histogram eq., arithmetic
- 5. Image filtering: convolution (linear) and non-linear (median)