
Sampling-Based Methods
for Path Planning: Part II

With so many slides and ideas from so many people:

Howie Choset, Nancy Amato, David Hsu, Sonia Chernova,
Steve LaValle, James Kuffner, Greg Hager

Mobile Robots vs Robot Manipulators
So far, we’ve seen two kinds of robots in this class:

Mobile robots:

 Treat the robot as a single rigid object that moves in the plane.

 Can describe position and orientation using 𝑆𝐸 2

 If we know the values for (𝒙, 𝒚, 𝜽) ∈ 𝑆𝐸 2 , we know everything there is to know about the robot.

Robot arms:

 A series of links connected by single-dof joints

 Describe the robot using a vector of joint variables

 Describe the position and orientation of the tool (end effector) using 𝑆𝐸 2

 The mapping between the joint variables and tool position/orientation can be tricky, but the key idea is this:

 If we know the values for the joint variables, we know everything there is to know about the
manipulator.

For both robots, given the values of some set of variables, we know
everything there is to know about the robot (w.r.t. its geometry).

Configuration Space

A key concept for motion planning is a configuration:

 A configuration of a system is a complete specification of the position
of every point in the system

 The space of all configurations is the configuration space or C-space.

C-space formalism:

Lozano-Perez 1979

Forward Kinematics

(x,y)

y

x

Compute position of some point on the robot, given the values of joint variables

Find (x,y) in terms

of joint angles

𝒙 = 𝒂𝟏𝒄𝒐𝒔 𝜽𝟏 + 𝒂𝟐𝒄𝒐𝒔 𝜽𝟏 + 𝜽𝟐
𝒚 = 𝒂𝟏𝒔𝒊𝒏 𝜽𝟏 + 𝒂𝟐𝒔𝒊𝒏 𝜽𝟏 + 𝜽𝟐

Configuration Space: two-link arm

For any point 𝑥, 𝑦 on the two-link robot,
we can derive a similar set of equations:

 The angles 𝜃1, 𝜃2 completely define the
configuration of this robot!

 The Configuration Space for this robot is
a torus!

 𝜃1is the angle around the donut

 𝜃2 is the angle through the hole

For the End Effector:

𝒙 = 𝒂𝟏𝒄𝒐𝒔 𝜽𝟏 + 𝒂𝟐𝒄𝒐𝒔 𝜽𝟏 + 𝜽𝟐
𝒚 = 𝒂𝟏𝒔𝒊𝒏 𝜽𝟏 + 𝒂𝟐𝒔𝒊𝒏 𝜽𝟏 + 𝜽𝟐

𝜽𝟏

𝜽𝟐

Representing the configuration space

Represent the torus as a

‘square’ with ‘edges identified’

Obstacles in C-Space
 Let 𝑞 denote a point in a configuration space 𝒬

 The path planning problem is to find a mapping 𝛾: 0,1 → 𝒬 s.t. no
configuration along the path intersects an obstacle.

 Denote the i-th workspace obstacle by 𝒪𝑖, and by 𝑅 𝑞 the volume occupied
by the robot at configuration 𝑞.

 A configuration space obstacle 𝒬𝒪𝑖 is the set of configurations 𝑞 at which the
robot intersects 𝒪𝑖

𝒬𝒪𝑖 = 𝑞 ∈ 𝒬 𝑅 𝑞 ∩ 𝒪𝑖 ≠ ∅}

 The free configuration space (or just free space) 𝒬𝑓𝑟𝑒𝑒 is

𝒬𝑓𝑟𝑒𝑒 = 𝒬 −∪𝑖 𝒬𝒪𝑖

 The free space is generally an open set.

 A free path is a mapping 𝛾: 0,1 → 𝒬𝑓𝑟𝑒𝑒.

 A semi-free path is a mapping 𝛾: 0,1 → 𝑐𝑙(𝒬𝑓𝑟𝑒𝑒).

Disc in 2-D workspace

workspace configuration

space

For our application

 Our mobile robot is close enough to being circular that it is fine to

model it as a circle with a fixed radius.

r

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot

(treat as point object)
x,y

Polygonal robot translating in 2-D workspace

workspace
configuration

space

Polygonal robot translating in 2-D workspace

workspace
configuration

space

Polygonal robot translating & rotating in 2-D workspace

x

y

q

SE(2)

Configuration Space

b

a

A

B

Configuration Space

b

a

A

B

Two Link Path

Thanks to Ken Goldberg

Two Link Path

How can we automatically plan these paths?

In fact, we already know how to do this:

Sampling-Based Planning!

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone
When we first saw PRM, it
was for planning paths of
simple mobile robots moving
in the plane.

With the concept of C-Space,
We can easily generalize the
method.

The only changes needed are
in the local path planner and
collision-checking routines.

Why is Path Planning Difficult?

• The hard part for path planning is explicitly constructing
a representation of the configuration space obstacle
region (or the free configuration space).

• For the example here, we used a grid, and merely
evaluated each grid point to see if it was collision free.

• The works for simple 2D cases, but if we discretize each
axis into 𝑁 intervals, the number of grid cells becomes
𝑁𝑑 for a 𝑑-dimensional configuration space:
 This approach does not scale!

 With sampling-based planning, we need to answer the
question:
 Does the straight-line path between two samples

cause a collision?
This is not such a difficult query – fast collision
checking algorithms exist.

Why does it work? Intuition

 A small number of milestones almost “cover” the

entire configuration space.

 Rigorous definitions and exist (of course!)

Optimizing the path

• Milestone-based paths are far from optimal and require additional
refinement before they are usable

• A typical solution can look like this:

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Optimizing the path

• A simple way to improve the path, is to repeatedly pick two nodes
at random, and check whether they can be connected by a straight
line without collision. If so, use the line to shorten the path.

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Optimizing the path

• Repeat for N iterations, or until no further improvements are
being made

• The result is not an optimal path, but shorter and more efficient
than the original

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Smoothing the path

• Optionally, the shortened path can then be smoothed to allow for
continuous robot motion

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Good news, but bad news too

Sample-based: The Good News
1. probabilistically complete

2. Do not construct the C-space

3. apply easily to high-dimensional C-space

4. support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously

unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Sample-Based: The Bad News

1. don’t work as well for some problems:

– unlikely to sample nodes in narrow passages

– hard to sample/connect nodes on constraint surfaces

2. No optimality or completeness

start

goal

C-obst

C-obst

C-obst

C-obst

PRM variants

• There are (very) many…

• Lazy PRM:
• Create a dense PRM without ANY collision checking

• When you have qinitand qgoal:

• Find qinit→s1→s2→ qgoal

• Check only the edges in the returned path for collisions, remove any
edges with collisions.

Assumptions

 Static obstacles

 Many queries to be processed in the same

environment

 Examples

 Navigation in static virtual environments

 Robot manipulator arm in a workcell

 Advantages:

 Amortize the cost of planning over many problems

 Probabilistically complete

General Types of approaches that use sampling

Sampling-based methods typically fall into two categories:

Rapidly-Exploring Random Tree (RRT)

• Searches for a path from the initial configuration to the goal
configuration by expanding a search tree

• For each step,
• The algorithm samples a target configuration and expands the tree

towards it.

• The sample can either be a random configuration or the goal
configuration itself, depends on the probability value defined by the user.

Naïve random tree

• Pick a vertex at random

• Move in a random direction to generate a new vertex

• Repeat…

Rapidly-Exploring Random Tree

The Basic Idea: Iteratively expand the tree

• Denote by 𝑇𝑘 the tree at iteration 𝑘

• Randomly choose a configuration 𝑞𝑟𝑎𝑛𝑑

• Choose 𝑞𝑛𝑒𝑎𝑟 = arg min
𝑞∈𝑇𝑘

𝑑(𝑞, 𝑞𝑟𝑎𝑛𝑑)

𝑞𝑛𝑒𝑎𝑟 is the nearest existing node in the tree to 𝑞𝑟𝑎𝑛𝑑

• Create a new node, 𝑞𝑛𝑒𝑤 by taking a small step from 𝑞𝑛𝑒𝑎𝑟 toward 𝑞𝑟𝑎𝑛𝑑

Path Planning with RRTs

BUILD_RRT (qinit) {

T.init(qinit);

for k = 1 to K do

qrand = RANDOM_CONFIG();

EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[Kuffner & LaValle , ICRA’00]

RRTs and

Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Why are RRT’s rapidly exploring?

The probability of a node being selected for expansion (i.e. being a
nearest neighbor to a new randomly picked point) is proportional to
the area of its Voronoi region.

Biases

• Bias toward larger spaces

• Bias toward goal

– When generating a random sample, with some probability pick the goal instead of a random

node when expanding

– This introduces another parameter

– James’ experience is that 5-10% is the right choice

– If you do this 100%, then this is a RPP

RRT in Action…

RRT

Requires the following functions:

p = RandomSample()

Uniform random sampling of free configuration space

v = Nearest(p)

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal)

For a point p and a goal point, find p’ that is closer to the goal than p

ObstacleFree(p)

Check if a given Cspace point is in the free space

RRT

Requires the following functions:

p = RandomSample()

Uniform random sampling of free configuration space

v = Nearest(p)

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal)

For a point p and a goal point, find p’ that is closer to the goal than p

ObstacleFree(p)

Check if a given Cspace point is in the free space

RRT

Requires the following functions:

p = RandomSample()

Uniform random sampling of free configuration space

v = Nearest(p)

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal)

For a point p and a goal point, find p’ that is closer to the goal than p

p)

Check if ais in the free space

RRT

Requires the following functions:

p = RandomSample()

Uniform random sampling of free configuration space

v = Nearest(p)

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal)

For a point p and a goal point, find p’ that is closer to the goal than p

ObstacleFree(p)

Check if a given Cspace point is in the free space

RRT

Requires the following functions:

p = RandomSample()

Uniform random sampling of free configuration space

v = Nearest(p)

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal)

For a point p and a goal point, find p’ that is closer to the goal than p

ObstacleFree(p)

Check if a given Cspace point is in the free space

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT - Bias to Goal

Articulated Robot

Highly Articulated Robot

Hovercraft with 2 Thusters

Out of This World Demo

Left-turn only forward car

Rapidly-Exploring Random Tree (RRT)

• Advantages of RRT: very fast, works well for dynamic
environments

• Disadvantages: Not optimal
• in fact, it has been proven by Karaman & Frazzoli that the probability of

RRT converging to an optimal solution is 0

Variants of RRT

• There are (very) many…

• Rapidly-exploring Random Graph (RRG):
• Connect all vertices within neighboring region, forming a graph

• RRT*:
• a variant of RRG that essentially “rewires" the tree as better paths are

discovered.

Summary

• Both RRT and PRM are examples of sampling based algorithms
that are probabilistically complete

• Definition: A path planner is probabilistically complete if, given a
solvable problem, the probability that the planner solves the
problem goes to 1 as time goes to infinity.

Links to Further Reading

• Steve LaValle’s online book:

“Planning Algorithms” (chapters 5 & 14)

http://planning.cs.uiuc.edu/

• The RRT page:

http://msl.cs.uiuc.edu/rrt/

• Motion Planning Benchmarks

Parasol Group, Texas A&M
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

http://planning.cs.uiuc.edu/
http://msl.cs.uiuc.edu/rrt/
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

