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Mobile Robots vs Robot Manipulators
So far, we’ve seen two kinds of robots in this class:

Mobile robots:

 Treat the robot as a single rigid object that moves in the plane.

 Can describe position and orientation using 𝑆𝐸 2

 If we know the values for  (𝒙, 𝒚, 𝜽) ∈ 𝑆𝐸 2 , we know everything there is to know about the robot.

Robot arms:

 A series of links connected by single-dof joints

 Describe the robot using a vector of joint variables

 Describe the position and orientation of the tool (end effector) using 𝑆𝐸 2

 The mapping between the joint variables and tool position/orientation can be tricky, but the key idea is this: 

 If we know the values for the joint variables, we know everything there is to know about the 
manipulator.

For both robots, given the values of some set of variables, we know 
everything there is to know about the robot (w.r.t. its geometry).



Configuration Space

A key concept for motion planning is a configuration:

 A configuration of a system is a complete specification of the position 
of every point in the system

 The space of all configurations is the configuration space or C-space.

C-space formalism:

Lozano-Perez 1979



Forward Kinematics

(x,y)

y

x

Compute position of some point on the robot, given the values of joint variables

Find (x,y) in terms

of joint angles

𝒙 = 𝒂𝟏𝒄𝒐𝒔 𝜽𝟏 + 𝒂𝟐𝒄𝒐𝒔 𝜽𝟏 + 𝜽𝟐
𝒚 = 𝒂𝟏𝒔𝒊𝒏 𝜽𝟏 + 𝒂𝟐𝒔𝒊𝒏 𝜽𝟏 + 𝜽𝟐



Configuration Space: two-link arm

For any point 𝑥, 𝑦 on the two-link robot, 
we can derive a similar set of equations:

 The angles 𝜃1, 𝜃2 completely define the 
configuration of this robot! 

 The Configuration Space for this robot is 
a torus!

 𝜃1is the angle around the donut

 𝜃2 is the angle through the hole

For the End Effector:

𝒙 = 𝒂𝟏𝒄𝒐𝒔 𝜽𝟏 + 𝒂𝟐𝒄𝒐𝒔 𝜽𝟏 + 𝜽𝟐
𝒚 = 𝒂𝟏𝒔𝒊𝒏 𝜽𝟏 + 𝒂𝟐𝒔𝒊𝒏 𝜽𝟏 + 𝜽𝟐

𝜽𝟏

𝜽𝟐



Representing the configuration space

Represent the torus as a 

‘square’ with ‘edges identified’



Obstacles in C-Space
 Let 𝑞 denote a point in a configuration space 𝒬

 The path planning problem is to find a mapping 𝛾: 0,1 → 𝒬 s.t. no 
configuration along the path intersects an obstacle.

 Denote the i-th workspace obstacle by 𝒪𝑖, and by 𝑅 𝑞 the volume occupied 
by the robot at configuration 𝑞.

 A configuration space obstacle 𝒬𝒪𝑖 is the set of configurations 𝑞 at which the 
robot intersects 𝒪𝑖

𝒬𝒪𝑖 = 𝑞 ∈ 𝒬 𝑅 𝑞 ∩ 𝒪𝑖 ≠ ∅}

 The free configuration space (or just free space) 𝒬𝑓𝑟𝑒𝑒 is

𝒬𝑓𝑟𝑒𝑒 = 𝒬 −∪𝑖 𝒬𝒪𝑖

 The free space is generally an open set.

 A free path is a mapping 𝛾: 0,1 → 𝒬𝑓𝑟𝑒𝑒. 

 A semi-free path is a mapping 𝛾: 0,1 → 𝑐𝑙(𝒬𝑓𝑟𝑒𝑒).



Disc in 2-D workspace

workspace configuration 

space



For our application

 Our mobile robot is close enough to being circular that it is fine to 

model it as a circle with a fixed radius.

r



Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y



Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot

(treat as point object)
x,y



Polygonal robot translating in 2-D workspace

workspace
configuration 

space



Polygonal robot translating in 2-D workspace

workspace
configuration 

space



Polygonal robot translating & rotating in 2-D workspace

x

y

q



SE(2)



Configuration Space
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Two Link Path

Thanks to Ken Goldberg



Two Link Path



How can we automatically plan these paths?

In fact, we already know how to do this:

Sampling-Based Planning!

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone
When we first saw PRM, it 
was for planning paths of 
simple mobile robots moving 
in the plane.

With the concept of C-Space,
We can easily generalize the 
method.

The only changes needed are 
in the local path planner and 
collision-checking routines.



Why is Path Planning Difficult?

• The hard part for path planning is explicitly constructing 
a representation of the configuration space obstacle 
region (or the free configuration space).

• For the example here, we used a grid, and merely 
evaluated each grid point to see if it was collision free.

• The works for simple 2D cases, but if we discretize each 
axis into 𝑁 intervals, the number of grid cells becomes 
𝑁𝑑 for a 𝑑-dimensional configuration space:
 This approach does not scale!

 With sampling-based planning, we need to answer the 
question: 
 Does the straight-line path between two samples 

cause a collision?
This is not such a difficult query – fast collision 
checking algorithms exist.



Why does it work? Intuition

 A small number of milestones almost “cover” the 

entire configuration space. 

 Rigorous definitions and exist (of course!)



Optimizing the path

• Milestone-based paths are far from optimal and require additional 
refinement before they are usable

• A typical solution can look like this:

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Optimizing the path

• A simple way to improve the path, is to repeatedly pick two nodes 
at random, and check whether they can be connected by a straight 
line without collision.  If so, use the line to shorten the path.

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Optimizing the path

• Repeat for N iterations, or until no further improvements are 
being made

• The result is not an optimal path, but shorter and more efficient 
than the original

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Smoothing the path

• Optionally, the shortened path can then be smoothed to allow for 
continuous robot motion

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Good news, but bad news too

Sample-based: The Good News
1. probabilistically complete

2. Do not construct the C-space

3.     apply easily to high-dimensional C-space

4.     support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously 

unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Sample-Based: The Bad News

1. don’t work as well for some problems:

– unlikely to sample nodes in narrow passages

– hard to sample/connect nodes on constraint surfaces

2. No optimality or completeness

start

goal

C-obst

C-obst

C-obst

C-obst



PRM variants

• There are (very) many…

• Lazy PRM:
• Create a dense PRM without ANY collision checking 

• When you have qinitand qgoal: 

• Find qinit→s1→s2→ qgoal

• Check only the edges in the returned path for collisions, remove any 
edges with collisions.



Assumptions

 Static obstacles

 Many queries to be processed in the same 

environment

 Examples

 Navigation in static virtual environments

 Robot manipulator arm in a workcell

 Advantages: 

 Amortize the cost of planning over many problems

 Probabilistically complete



General Types of approaches that use sampling

Sampling-based methods typically fall into two categories:



Rapidly-Exploring Random Tree (RRT)

• Searches for a path from the initial configuration to the goal 
configuration by expanding a search tree 

• For each step, 
• The algorithm samples a target configuration and expands the tree 

towards it. 

• The sample can either be a random configuration or the goal 
configuration itself, depends on the probability value defined by the user. 



Naïve random tree

• Pick a vertex at random

• Move in a random direction to generate a new vertex

• Repeat…



Rapidly-Exploring Random Tree



The Basic Idea: Iteratively expand the tree

• Denote by 𝑇𝑘 the tree at iteration 𝑘

• Randomly choose a configuration 𝑞𝑟𝑎𝑛𝑑

• Choose 𝑞𝑛𝑒𝑎𝑟 = arg min
𝑞∈𝑇𝑘

𝑑(𝑞, 𝑞𝑟𝑎𝑛𝑑)

𝑞𝑛𝑒𝑎𝑟 is the nearest existing node in the tree to 𝑞𝑟𝑎𝑛𝑑

• Create a new node, 𝑞𝑛𝑒𝑤 by taking a small step from 𝑞𝑛𝑒𝑎𝑟 toward 𝑞𝑟𝑎𝑛𝑑



Path Planning with RRTs

BUILD_RRT (qinit)  {

T.init(qinit); 

for k =  1 to K do 

qrand = RANDOM_CONFIG();    

EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[ Kuffner & LaValle , ICRA’00]



RRTs and 

Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html



Why are RRT’s rapidly exploring? 

The probability of a node being selected for expansion (i.e. being a 
nearest neighbor to a new randomly picked point) is proportional to 
the area of its Voronoi region.



Biases

• Bias toward larger spaces

• Bias toward goal

– When generating a random sample, with some probability pick the goal instead of a random 

node when expanding

– This introduces another parameter

– James’ experience is that 5-10% is the right choice

– If you do this 100%, then this is a RPP



RRT in Action…



RRT

Requires the following functions:

p = RandomSample() 

Uniform random sampling of free configuration space

v = Nearest(p)  

Given point in Cspace, find vertex on tree that is closest to that point

p’ = Steer(p, goal) 

For a point p and a goal point, find p’ that is closer to the goal than p

ObstacleFree(p) 

Check if a given Cspace point is in the free space
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RRT - Bias to Goal



Articulated Robot



Highly Articulated Robot  



Hovercraft with 2 Thusters



Out of This World Demo



Left-turn only forward car



Rapidly-Exploring Random Tree (RRT)

• Advantages of RRT: very fast, works well for dynamic 
environments

• Disadvantages: Not optimal 
• in fact, it has been proven by Karaman & Frazzoli that the probability of 

RRT converging to an optimal solution is 0



Variants of RRT

• There are (very) many…

• Rapidly-exploring Random Graph (RRG):
• Connect all vertices within neighboring region, forming a graph

• RRT*:
• a variant of RRG that essentially “rewires" the tree as better paths are 

discovered. 



Summary

• Both RRT and PRM are examples of sampling based algorithms
that are probabilistically complete

• Definition: A path planner is probabilistically complete if, given a 
solvable problem, the probability that the planner solves the 
problem goes to 1 as time goes to infinity.



Links to Further Reading

• Steve LaValle’s online book:

“Planning Algorithms” (chapters 5 & 14)

http://planning.cs.uiuc.edu/

• The RRT page:

http://msl.cs.uiuc.edu/rrt/

• Motion Planning Benchmarks

Parasol Group, Texas A&M
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

http://planning.cs.uiuc.edu/
http://msl.cs.uiuc.edu/rrt/
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

