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Inverse Kinematics:
Planar Arms



Assigning Link Frames

• 𝑥1 is collinear with the origin of Frame 0

𝑥0

𝑦0

𝑥1

𝑥2 is collinear with the 
origin of Frame 1

𝑥2

𝜃1 is the angle from 𝑥0to 𝑥1

𝜃2 is the angle from 𝑥1to 𝑥2

• Frame 𝑛 is the end-effector frame. It can be attached to link 𝑛 in any manner that is 
convenient. 

• In this case, 𝑛 = 2, so Frame 2 is the end-effector frame.



The Forward Kinematic Map

• 𝑥1 is collinear with the origin of Frame 0

𝑥0

𝑦0

𝑥1

𝑥2 is collinear with the 
origin of Frame 1

𝑥2

𝜃1 is the angle from 𝑥0to 𝑥1

𝜃2 is the angle from 𝑥1to 𝑥2

Once we have coordinate frames for each link:

• Determine 𝑇𝑖
𝑖−1 for adjacent links as a function of 𝑞𝑖

• The forward kinematic map is given by: 𝑇𝑛
0(𝑞1…𝑞𝑛) = 𝑇1

0(𝑞1)…𝑇𝑛
𝑛−1(𝑞𝑛)



• The forward kinematic map gives the position and orientation of the 
end-effector frame as a function of the joint variables:

𝑇𝑛
0 = 𝐹(𝑞1, … , 𝑞𝑛)

• For the two-link planar arm, we have

𝑇2
0 =

cos 𝜃1 −sin 𝜃1 𝑎1 cos 𝜃1
sin 𝜃1 cos 𝜃1 𝑎1 sin 𝜃1
0 0 1

cos 𝜃2 −sin 𝜃2 𝑎2 cos 𝜃2
sin 𝜃2 cos 𝜃2 𝑎2 sin 𝜃2
0 0 1

=
cos(𝜃1+𝜃2) − sin(𝜃1+𝜃2) 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)
sin(𝜃1+𝜃2) cos(𝜃1+𝜃2) 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)

0 0 1

The Forward Kinematic Map

𝑥0

𝑥1

𝑥2
𝑎2

𝑎1
𝜃2

𝜃1



Inverse Kinematics

The General Inverse Kinematics Problem:

Given the forward kinematic map: 𝑇𝑛
0 = 𝐹(𝑞1, … , 𝑞𝑛)

Solve for 𝑞1, … , 𝑞𝑛 to achieve a desired 𝑇𝑑

i.e., find 𝑞1
𝑑 , … , 𝑞𝑛

𝑑 such that 𝐹(𝑞1
𝑑 , … , 𝑞𝑛

𝑑) = 𝑇𝑑

Why is this difficult?

• In general, 𝐹(𝑞1, … , 𝑞𝑛) will be nonlinear. Solving nonlinear equations is hard.

• Further, for a general 𝐹(𝑞1, … , 𝑞𝑛) we don’t know

• Does a solution to 𝐹 𝑞1, … , 𝑞𝑛 = Td exist?
• If a solution exists, is it unique? 



The Inverse Kinematic Solution
For the two-link arm, typically the goal is to place the end-effector at a desired location.

• Denote the coordinates of the origin of frame 2 by 𝑜2,𝑥, 𝑜2,𝑦.

• Solve for 𝜃1and 𝜃2 such that
𝑜2,𝑥 = 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)
𝑜2,𝑦 = 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)

• Recall that 𝑎1 and 𝑎2 are constants defined by the mechanical structure of the arm.

• This is a nonlinear set of equations in 𝜃1and 𝜃2 --- and nonlinear equations can be 
very difficult to solve!

𝑇2
0 =

cos(𝜃1+𝜃2) − sin(𝜃1+𝜃2) 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)
sin(𝜃1+𝜃2) cos(𝜃1+𝜃2) 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)

0 0 1

=

∗ ∗ 𝑜2,𝑥
∗ ∗ 𝑜2,𝑦
0 0 1

NOTE: 
• We don’t care about the orientation for this problem.
• In fact, we can’t choose the orientation if we also choose 𝑜2,𝑥, 𝑜2,𝑦.



Geometric Methods (closed-form solns)
• For some manipulators, it is possible to use fairly 

simple trigonometry to solve the inverse kinematics 
problem.

• Any two adjacent links are coplanar (any two 
intersecting lines are coplanar).

• The origins of frames 𝑖 − 1, 𝑖, and 𝑖 + 1 define a 
triangle.

• Simple, trigonometry in the plane might just get the 
job done!

𝑥0

𝑦0

𝑥1

𝑥2

𝑥0

𝑦0

𝑥2



Solving for 𝜃2

𝑥0

𝑦0

𝑥1

𝑥2

𝑟2 = 𝑜2,𝑥
2 + 𝑜2,𝑦

2

𝜃2 = 𝜋 − 𝛼

Denote the coordinates of the 
origin of frame 2 by 𝑜2,𝑥 , 𝑜2,𝑦.

𝛼

The Law of Cosines:
𝑟2 = 𝑎1

2 + 𝑎2
2 − 2𝑎1𝑎2 cos 𝛼

Define:

𝐷 ≝
𝑎1
2 + 𝑎2

2 − 𝑟2

2𝑎1𝑎2
= cos 𝛼

Then sin 𝛼 = ± 1 − 𝐷2

Finally,

𝛼 = tan−1
± 1 − 𝐷2

𝐷

 With this set of equations, we can solve for 𝜃2
using simple solutions to closed-form equations.

 We never need to solve a nonlinear system!



What about existence and uniqueness? 

Does a solution always exist for 𝛼 = tan−1
± 1−𝐷2

𝐷
?

No solution exists if 𝐷2 > 1:

𝐷2 =
𝑎1
2 + 𝑎2

2 − 𝑟2

2𝑎1𝑎2

2

≤ 1

𝑎1
2 + 𝑎2

2 − 𝑟2 ≤ ±2𝑎1𝑎2

𝑎1
2 ± 2𝑎1𝑎2 + 𝑎2

2 ≤ 𝑟2

𝑎1 ± 𝑎2
2 ≤ 𝑟2

∣ 𝒂𝟏 ± 𝒂𝟐∣ ≤ 𝒓

In this case,  a solution exists!



What about existence and uniqueness? 
Is the solution unique for 𝛼 = tan−1

± 1−𝐷2

𝐷
?

Clearly, the solution is not unique, since we may choose 
either square root!

The second solution uses 𝛼 = tan−1
− 1−𝐷2

𝐷
which results 

in an “elbow UP” configuration.

𝑥0

𝑦0

𝑥1

𝑥2

𝑥0

𝑦0

𝑥1

𝑥2

Elbow UP

Elbow DOWN

NOTE: when ∣ 𝒂𝟏 ± 𝒂𝟐 ∣= 𝒓
the two solutions “collapse” 
into a single  solution.



Degenerate Solutions

𝑦0𝑦0

𝑥0 𝑥1 𝑥2
𝑎1 + 𝑎2 = 𝑟

𝑦0𝑦0

𝑥0
𝑥1

𝑥2

𝑎1 − 𝑎2 = 𝑟

𝑟

𝑟

Arm fully extended

Arm “folds back” on itself



Solving for 𝜃1

𝑥0

𝑦0

𝑥1

𝑥2

𝑟2 = 𝑜2,𝑥
2 + 𝑜2,𝑦

2

Denote the coordinates of the 
origin of frame 2 by 𝑜2,𝑥 , 𝑜2,𝑦.

𝛽 The Law of Cosines, this time for 𝛾:

𝑎2
2 = 𝑎1

2 + 𝑟2 − 2𝑎1𝑟 cos 𝛾

𝜃1 = 𝛽 − 𝛾

𝛽 = tan−1
𝑜2,𝑦
𝑜2,𝑥

 With this set of equations, we can solve for 𝜃1
using simple solutions to closed-form equations.

 We never need to solve a nonlinear system!

𝜃1

𝛾

𝑎2

Elbow up is left as an exercise for you!



Position and Orientation

Suppose we wish to position the end effector frame at a specific position, and with a specific 
orientation.

• We can parameterize the end effector frame by (𝑿𝒆, 𝒀𝒆, 𝝓)

• (𝑿𝒆, 𝒀𝒆) give the position of the origin of the frame

• 𝝓 gives the orientation of the frame:

𝑇2
0 =

cos 𝜙 − sin𝜙 𝑋𝑒
sin𝜙 cos𝜙 𝑌𝑒
0 0 1

• We can’t do this with a two-link arm. 

• Intuitively, we have three inputs (𝜃1 and 𝜃2) and three outputs.

• Our solution to the two-link arm shows that once we choose 𝜃1 and 𝜃2 the orientation of 
the end-effector frame is fully determined.

Add another link!



Three-Link Planar Arm 𝑥3
𝑦3

𝑇2
0 =

𝐶123 −𝑆123 𝑎1𝐶1 + 𝑎2𝐶12 + 𝑎3𝐶123
𝑆123 𝐶123 𝑎1𝑆1 + 𝑎2𝑆12 + 𝑎3𝑆123
0 0 1

𝑇3
0 =

cos𝜙 −sin𝜙 𝑋𝑒
sin𝜙 cos𝜙 𝑌𝑒
0 0 1

𝐶123 = cos 𝜃1 + 𝜃2 + 𝜃3 , etc.

(𝑋𝑒 , 𝑌𝑒)

𝜙

• Given (𝑿𝒆, 𝒀𝒆, 𝝓), we know everything about 
the position and orientation of link 3! 

• After all, link 3 is a rigid body, with a rigidly 
attached Frame 3. 

• If we know the position and orientation of 
Frame 3, we know everything about Link 3!



Three-Link Planar Arm 𝑥3
𝑦3

Using simple trigonometry we obtain
𝑜2,𝑥 + 𝑎3 cos𝜙 = 𝑋𝑒
𝑜2,𝑦 + 𝑎3 sin𝜙 = 𝑌𝑒

(𝑋𝑒 , 𝑌𝑒)

𝜙

𝜙

𝑎3

And from this we immediately conclude
𝑜2,𝑥 = 𝑋𝑒 − 𝑎3 cos𝜙

𝑜2,𝑦 = 𝑦𝑒 − 𝑎3 sin𝜙

(𝑜2,𝑥, 𝑜2,𝑦)



And now, it’s a 2-link 
arm problem

𝑥3
𝑦3

(𝑋𝑒 , 𝑌𝑒)

𝜙

𝑜2,𝑥 = 𝑋𝑒 − 𝑎3 cos𝜙

𝑜2,𝑦 = 𝑦𝑒 − 𝑎3 sin𝜙

As before, there are 0, 1, or two 
solutions (elbow down is shown).



Prismatic Joint no link offset

𝑇2
1 =

1 0 0
0 1 0
0 0 1

1 0 𝑎2
0 1 0
0 0 1

=
1 0 𝑎2
0 1 0
0 0 1

• Define Frames 0 and 1 as before: 𝑥1 is collinear 
with the origin of Frame 0.

• Define Frame 2 such that 𝑥2 is collinear with 𝑥1

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝜃1

𝑇2
1 =

1 0 𝑎2
0 1 0
0 0 1

𝜽𝟐 = 𝟎 since 𝒙𝟏 and 𝒙𝟐 axes are parallel 

Joint 2 is prismatic.



Prismatic Joints
• Define Frames 0 and 1 as before: 𝑥1 is collinear 

with the origin of Frame 0.
• Define Frame 2 such that 𝑥2 is collinear with 𝑥1

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝜃1

Joint 2 is prismatic.



Inverse Kinematic Solution
As before, let (𝑜2,𝑥 , 𝑜2,𝑦) denote the coordinates of the origin of Frame 2.

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝜃1

(𝑜2,𝑥, 𝑜2,𝑦)

Since 𝜃2 = 0, the orientation of the end-
effector frame is completely determined by 𝜃1:

𝜃1 = tan−1
𝑜2,𝑦
𝑜2,𝑥

Once we have a solution for 𝜃1, we can directly solve the forward 
kinematic equations for 𝑎2:

(𝑎1+𝑎2) cos 𝜃1 = 𝑜2,𝑥 ⇒ 𝑎2 =
𝑜2,𝑥 − 𝑎1 cos 𝜃1

cos 𝜃1



Three-link RPR Arm

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2 𝜃3 Joint 2 is prismatic.

𝑥3

𝑇3
0 =

cos 𝜃1 −sin 𝜃1 𝑎1 cos 𝜃1
sin 𝜃1 cos 𝜃1 𝑎1 sin 𝜃1
0 0 1

1 0 𝑎2
0 1 0
0 0 1

cos 𝜃3 −sin 𝜃3 𝑎3 cos 𝜃3
sin 𝜃3 cos 𝜃3 𝑎3 sin 𝜃3
0 0 1

=
cos(𝜃1+𝜃3) − sin(𝜃1+𝜃3) (𝑎1 + 𝑎2) cos 𝜃1 + 𝑎3 cos(𝜃1+𝜃3)
sin(𝜃1+𝜃3) cos(𝜃1+𝜃3) (𝑎1 + 𝑎2) sin 𝜃1 + 𝑎3 sin(𝜃1+𝜃3)

0 0 1



Inverse Kinematic Solution

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝑥3

As with the three-link RRR arm, 

• Parameterize the end effector frame by (𝑿𝒆, 𝒀𝒆, 𝝓)

• Use 𝝓 and 𝒂𝟑 to solve for (𝒐𝟐,𝒙, 𝒐𝟐,𝒚)

• Solve for 𝜽𝟏 and 𝒂𝟐 using the two-link RP solution given above.

• 𝜽𝟑 = 𝝓− 𝜽𝟏

𝝓

(𝑋𝑒 , 𝑌𝑒)

(𝑜2,𝑥, 𝑜2,𝑦)



Other Kinds of Robots

So far, we’ve looked only at simple planar arms with revolute joints.

Life becomes more complicated if

• We have prismatic joints with “link offsets”

• Robots are not planar (e.g., anthropomorphic arms)

• Robots have more joints than end-effector degrees of freedom (e.g., 
if a planar arm has four joint). Such robots are said to be redundant.

We’ll need to find other ways to solve the inverse kinematics for such 
robots.

Let’s see an example…



Prismatic Joint with link offset

𝑇2
1 =

1 0 0
0 1 0
0 0 1

1 0 𝑎2
0 1 𝑙2
0 0 1

=
1 0 𝑎2
0 1 𝑙2
0 0 1

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝜃1

Joint 2 is prismatic.

𝑙2



Prismatic Joint with link offset

𝑇2
0 =

cos 𝜃1 −sin 𝜃1 𝑎1 cos 𝜃1
sin 𝜃1 cos 𝜃1 𝑎1 sin 𝜃1
0 0 1

1 0 𝑎2
0 1 𝑙2
0 0 1

=
cos 𝜃1 −sin 𝜃1 (𝑎1+𝑎2) cos 𝜃1 − 𝑙2 sin 𝜃1
sin 𝜃1 cos 𝜃1 (𝑎1+𝑎2) sin 𝜃1 + 𝑙2 cos 𝜃1
0 0 1

𝑥0

𝑦0

𝑥1

𝑥2

𝑎2

𝜃1

𝑇2
1 =

1 0 𝑎2
0 1 𝑙2
0 0 1

𝑙2



Three-link RPR Example

𝑥0

𝑦0

𝑥1

𝑥3

𝑥2

𝑎2

𝜃1

𝜃3

𝑇3
0 =

cos 𝜃1 −sin 𝜃1 (𝑎1+𝑎2) cos 𝜃1 − 𝑙2 sin 𝜃1
sin 𝜃1 cos 𝜃1 (𝑎1+𝑎2) sin 𝜃1 + 𝑙2 cos 𝜃1
0 0 1

cos 𝜃3 −sin 𝜃3 𝑎3 cos 𝜃3
sin 𝜃3 cos 𝜃3 𝑎3 sin 𝜃3
0 0 1

=
𝐶13 −𝑆13 (𝑎1+𝑎2) 𝐶1− 𝑙2𝑆1+𝑎3𝐶13
𝑆13 𝐶13 (𝑎1+𝑎2) 𝑆1+ 𝑙2𝐶1 + 𝑎3𝑆13
0 0 1

The geometric IKS solution promises to be 
painful, and this is still a simple planar arm.



More General Robot Arms

Imagine finding the geometric IKS solutions for 
more complicated arms in 3D work spaces…



Numerical Methods for Inverse Kinematics
• Denote the forward kinematic map by 𝐹 𝑞 .

• 𝐹 𝑞 is a vector-valued function, each component gives one coordinate of the end-effector pose. If the end 
effector has 𝑚 degrees of freedom and the robot has 𝑛 joints, then

𝐹 𝑞1, … , 𝑞𝑛 =
𝑓1(𝑞)
⋮

𝑓𝑚(𝑞)

• For the two-link arm, we would have

𝐹 𝜃1, 𝜃2 =
𝑥(𝜃1, 𝜃2)
𝑦(𝜃1, 𝜃2)

• Denote by 𝑥𝑑 the desired value of the end-effector pose.  

• For the two-link arm we would have

𝑥𝑑 =

𝑜2,𝑥
𝑑

𝑜2,𝑦
𝑑

• The inverse kinematic solution is the vector 𝒒𝒅 such that 𝑭 𝒒𝒅 = 𝒙𝒅.



Iterative Methods
Because we cannot solve 𝑭 𝒒𝒅 = 𝒙𝒅 for  𝒒𝒅 (nonlinear equation with no closed-form solution), we take 
an iterative approach.

• Generate a sequence of values 𝒒𝟎, 𝒒𝟏, 𝒒𝟐… until we find some 𝒒𝑵 such that 𝑭 𝒒𝑵 is sufficiently close 
to 𝒙𝒅, i.e.,

𝑭 𝒒𝑵 − 𝒙𝒅 < 𝝐

• In general, at each iteration, we compute 𝒒𝒊+𝟏 by

𝒒𝒊+𝟏 = 𝒒𝒊 + 𝜹𝒒

• The only trick is to determine a good value for 𝜹𝒒 at each iteration.



Gradient Descent
• In general, for gradient descent methods, the goal is to minimize the value of some function 𝐿(𝑞)

by choosing the updates according to 𝜹𝒒 = −𝛁𝐋 𝐪𝐢 where the gradient is w.r.t. 𝒒.

• To solve the inverse kinematics problem, we wish to minimize the error between 𝑭 𝒒 and 𝒙𝒅.

• Let’s define 𝐿(𝑞) in terms of the squared error:

𝐿 𝑞 =
1

2
𝐹 𝑞 − 𝑥𝑑

𝑇
𝐹 𝑞 − 𝑥𝑑

• For this problem, we define the iteration as

𝒒𝒊+𝟏 = 𝒒𝒊 − 𝜶𝒊𝛁𝐋(𝐪
𝐢)

• We can use the scalar 𝜶𝒊 to determine the magnitude of the step size.

• But what exactly is 𝛁𝐋(𝐪𝐢)



Calculating the Error Gradient (𝑛,𝑚 = 2)
𝐿 𝑞 =

1

2
(𝑓1 𝑞 − 𝑥1

𝑑) (𝑓2 𝑞 − 𝑥2
𝑑)

𝑓1 𝑞 − 𝑥1
𝑑

𝑓2 𝑞 − 𝑥2
𝑑

𝜕

𝜕𝑞1
𝐿 𝑞 =

𝜕

𝜕𝑞1

1

2
𝑓1 𝑞 − 𝑥1

𝑑 2
+ 𝑓2 𝑞 − 𝑥2

𝑑 2 𝜕

𝜕𝑞2
𝐿 𝑞 =

𝜕

𝜕𝑞2

1

2
𝑓1 𝑞 − 𝑥1

𝑑 2
+ 𝑓2 𝑞 − 𝑥2

𝑑 2

=
1

2
(𝑓1 𝑞 − 𝑥1

𝑑)2 +
1

2
𝑓2 𝑞 − 𝑥2

𝑑 2

= 
𝜕𝑓1

𝜕𝑞1
(𝑓1 𝑞 − 𝑥1

𝑑) +
𝜕𝑓2

𝜕𝑞1
(𝑓2 𝑞 − 𝑥2

𝑑) = 
𝜕𝑓1

𝜕𝑞2
(𝑓1 𝑞 − 𝑥1

𝑑) +
𝜕𝑓2

𝜕𝑞2
(𝑓2 𝑞 − 𝑥2

𝑑)

𝛻𝐿 𝑞 =

𝜕𝐿

𝜕𝑞1
𝜕𝐿

𝜕𝑞2

Stack these to obtain the gradient.



Calculating the Gradient (cont)

=

𝜕𝑓1
𝜕𝑞1

𝜕𝑓2
𝜕𝑞1

𝜕𝑓1
𝜕𝑞2

𝜕𝑓2
𝜕𝑞2

𝑓1 𝑞 − 𝑥1
𝑑

𝑓2 𝑞 − 𝑥2
𝑑

𝛻𝐿 𝑞 =

𝜕𝐿

𝜕𝑞1
𝜕𝐿

𝜕𝑞2

=

𝜕𝑓1
𝜕𝑞1

(𝑓1 𝑞 − 𝑥1
𝑑) +

𝜕𝑓2
𝜕𝑞1

(𝑓2 𝑞 − 𝑥2
𝑑)

𝜕𝑓1
𝜕𝑞2

(𝑓1 𝑞 − 𝑥1
𝑑) +

𝜕𝑓2
𝜕𝑞2

(𝑓2 𝑞 − 𝑥2
𝑑)

𝒒𝒊+𝟏 = 𝑞𝑖 − 𝛼𝑖𝛻L qi = 𝒒𝒊 + 𝜶𝒊 𝑱
𝑻 𝒒𝒊 (𝒙𝒅 − 𝒇 𝒒𝒊 )

We can write this as a matrix equation

= 𝑱𝑻 𝒒 (𝒇 𝒒 − 𝒙𝒅)

And we recognize that 

𝜕𝑓1

𝜕𝑞1

𝜕𝑓2

𝜕𝑞1
𝜕𝑓1

𝜕𝑞2

𝜕𝑓2

𝜕𝑞2

= 𝐽𝑇(𝑞), the arm 

Jacobian,

and that 
𝑓1 𝑞 − 𝑥1

𝑑

𝑓2 𝑞 − 𝑥2
𝑑 = (𝑓 𝑞 − 𝑥𝑑)!

And our gradient descent update becomes



Inverse Jacobian Method
Let’s take a look at the Taylor series expansion for the forward kinematic map 
around the i-th iteratate:

𝐹 𝑞𝑖 + 𝛿𝑞𝑖 = 𝐹 𝑞𝑖 + 𝐽 𝑞𝑖 𝛿𝑞𝑖 + ℎ. 𝑜. 𝑡.

Here, h.o.t. refers to higher order terms (these go to zero quickly as 𝛿𝑞𝑖 → 0).

If we neglect the higher order terms, the ideal choice for 𝛿𝑞𝑖 would be
𝛿𝑞𝑖 = 𝑞𝑑 − 𝑞𝑖

in which case we would step to the goal configuration in a single step!

In this case,
𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖 ≈ 𝐽 𝑞𝑖 𝛿𝑞𝑖

or
𝑥𝑑 − 𝐹 𝑞𝑖 ≈ 𝐽 𝑞𝑖 𝛿𝑞𝑖

and this leads to the update
𝜹𝒒𝒊 = 𝑱−𝟏 𝒒𝒊 (𝒙𝒅 − 𝑭 𝒒𝒊 )

Remember – we don’t know 𝒒𝒅.
Happily, 𝒒𝒅 does not appear on the r.h.s! 



What about redundant arms…

• For the two-link arm, we can position the end-effector origin anywhere in the 
arm’s workspace: two inputs (𝜃1, 𝜃2) and two “outputs” (𝑋𝑒 , 𝑌𝑒).

• For the three-link arm, we can position the end-effector origin anywhere in the 
arm’s workspace, and we can choose the orientation of the frame: three inputs 
(𝜃1, 𝜃2, 𝜃3) and three “outputs” (𝑋𝑒 , 𝑌𝑒 , 𝜙).

• Suppose we had a four-link arm?
• Infinitely may ways to achieve a desired end-effector configuration (𝑋𝑒 , 𝑌𝑒 , 𝜙).



The case for 𝑛 > 𝑚
In this case, there are “extra” joints:

𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖 ≈ 𝐽 𝑞𝑖 𝛿𝑞𝑖

If we write this out in detail, we see

𝑓1 𝑞𝑖 + 𝛿𝑞𝑖

⋮
𝑓𝑚 𝑞𝑖 + 𝛿𝑞𝑖

−
𝑓1 𝑞𝑖

⋮
𝑓𝑚 𝑞𝑖

≈

𝜕𝑓1
𝜕𝑞1

⋯
𝜕𝑓1
𝜕𝑞𝑛

⋱
𝜕𝑓𝑚
𝜕𝑞1

⋯
𝜕𝑓𝑚
𝜕𝑞𝑛

𝛿𝑞1
𝑖

⋮
𝛿𝑞𝑛

𝑖

Since 𝑱 is not square, we can’t invert it.

• Suppose 𝑟𝑎𝑛𝑘 𝐽 = 𝑚.

• Then 𝐽𝐽𝑇 ∈ ℝ𝑚×𝑚 and 𝑟𝑎𝑛𝑘 𝐽𝐽𝑇 = 𝑚

• Then 𝐽𝐽𝑇 −1 exists

What can we do with this…



Pseudoinverses
• Define 𝐽+ = 𝐽𝑇 𝐽𝐽𝑇 −1

• Suppose we let  𝛿𝑞𝑖 = 𝐽+ 𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖

Then
𝐽𝛿𝑞𝑖 = 𝐽𝐽+ 𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖 = 𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖

• In other words, 
𝐽+ 𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖 = 𝛿𝑞𝑖

is a solution to the equation

𝐹 𝑞𝑖 + 𝛿𝑞𝑖 − 𝐹 𝑞𝑖 = 𝐽 𝑞𝑖 𝛿𝑞𝑖

• We can use this to define our update law:
𝜹𝒒𝒊 = 𝑱+ 𝑭 𝒒𝒊 + 𝜹𝒒𝒊 − 𝑭 𝒒𝒊

• 𝐽+ is called a pseudoinverse.


