CS 3630

Inverse Kinematics: Planar Arms

Assigning Link Frames

- Frame n is the end-effector frame. It can be attached to link n in any manner that is convenient.
- In this case, $n=2$, so Frame 2 is the end-effector frame.

The Forward Kinematic Map

Once we have coordinate frames for each link:

- Determine T_{i}^{i-1} for adjacent links as a function of q_{i}
- The forward kinematic map is given by: $T_{n}^{0}\left(q_{1} \ldots q_{n}\right)=T_{1}^{0}\left(q_{1}\right) \ldots T_{n}^{n-1}\left(q_{n}\right)$

The Forward Kinematic Map

- The forward kinematic map gives the position and orientation of the end-effector frame as a function of the joint variables:

$$
T_{n}^{0}=F\left(q_{1}, \ldots, q_{n}\right)
$$

- For the two-link planar arm, we have

$$
\begin{aligned}
T_{2}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & a_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & a_{2} \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Inverse Kinematics

The General Inverse Kinematics Problem:

Given the forward kinematic map: $T_{n}^{0}=F\left(q_{1}, \ldots, q_{n}\right)$
Solve for q_{1}, \ldots, q_{n} to achieve a desired T^{d}
i.e., find $q_{1}^{d}, \ldots, q_{n}^{d}$ such that $F\left(q_{1}^{d}, \ldots, q_{n}^{d}\right)=T^{d}$

Why is this difficult?

- In general, $F\left(q_{1}, \ldots, q_{n}\right)$ will be nonlinear. Solving nonlinear equations is hard.
- Further, for a general $F\left(q_{1}, \ldots, q_{n}\right)$ we don't know
- Does a solution to $F\left(q_{1}, \ldots, q_{n}\right)=\mathrm{T}^{\mathrm{d}}$ exist?
- If a solution exists, is it unique?

The Inverse Kinematic Solution

For the two-link arm, typically the goal is to place the end-effector at a desired location.

- Denote the coordinates of the origin of frame 2 by $o_{2, x}, o_{2, y}$.
- Solve for θ_{1} and θ_{2} such that

$$
\begin{gathered}
o_{2, x}=a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
o_{2, y}=a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{gathered}
$$

- Recall that a_{1} and a_{2} are constants defined by the mechanical structure of the arm.
- This is a nonlinear set of equations in θ_{1} and θ_{2}--- and nonlinear equations can be very difficult to solve!

$$
T_{2}^{0}=\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
* & * & o_{2, x} \\
* & * & o_{2, y} \\
0 & 0 & 1
\end{array}\right]
$$

NOTE:

- We don't care about the orientation for this problem.
- In fact, we can't choose the orientation if we also choose $o_{2, x}, o_{2, y}$.

Geometric Methods (closed-form solns)

- For some manipulators, it is possible to use fairly simple trigonometry to solve the inverse kinematics problem.
- Any two adjacent links are coplanar (any two intersecting lines are coplanar).
- The origins of frames $i-1, i$, and $i+1$ define a triangle.
- Simple, trigonometry in the plane might just get the job done!

Solving for θ_{2}

$>$ With this set of equations, we can solve for θ_{2} using simple solutions to closed-form equations.
> We never need to solve a nonlinear system!

Denote the coordinates of the origin of frame 2 by $o_{2, x}, o_{2, y}$.

The Law of Cosines:

$$
r^{2}=a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2} \cos \alpha
$$

Define:

$$
D \stackrel{\text { def }}{=} \frac{a_{1}^{2}+a_{2}^{2}-r^{2}}{2 a_{1} a_{2}}=\cos \alpha
$$

Then $\sin \alpha= \pm \sqrt{1-D^{2}}$

Finally,

$$
\alpha=\tan ^{-1} \frac{ \pm \sqrt{1-D^{2}}}{D}
$$

What about existence and uniqueness?

Does a solution always exist for $\alpha=\tan ^{-1} \frac{ \pm \sqrt{1-D^{2}}}{D}$?
No solution exists if $D^{2}>1$:

$$
\begin{gathered}
D^{2}=\left(\frac{a_{1}^{2}+a_{2}^{2}-r^{2}}{2 a_{1} a_{2}}\right)^{2} \leq 1 \\
a_{1}^{2}+a_{2}^{2}-r^{2} \leq \pm 2 a_{1} a_{2} \\
a_{1}^{2} \pm 2 a_{1} a_{2}+a_{2}^{2} \leq r^{2} \\
\left(a_{1} \pm a_{2}\right)^{2} \leq r^{2} \\
\left|a_{1} \pm a_{2}\right| \leq r
\end{gathered}
$$

In this case, a solution exists!

What about existence and uniqueness?

 Is the solution unique for $\alpha=\tan ^{-1} \frac{ \pm \sqrt{1-D^{2}}}{D}$?Clearly, the solution is not unique, since we may choose either square root!
The second solution uses $\alpha=\tan ^{-1} \frac{-\sqrt{1-D^{2}}}{D}$ which results in an "elbow UP" configuration.

Degenerate Solutions

Arm "folds back" on itself

$$
a_{1}-a_{2}=r
$$

Solving for θ_{1}

Denote the coordinates of the origin of frame 2 by $o_{2, x}, o_{2, y}$.

$$
\begin{aligned}
& \theta_{1}=\beta-\gamma \\
& \beta=\tan ^{-1} \frac{o_{2, y}}{o_{2, x}}
\end{aligned}
$$

The Law of Cosines, this time for γ :

$$
a_{2}^{2}=a_{1}^{2}+r^{2}-2 a_{1} r \cos \gamma
$$

$>$ With this set of equations, we can solve for θ_{1} using simple solutions to closed-form equations.

- We never need to solve a nonlinear system!

Elbow up is left as an exercise for you!

Position and Orientation

Suppose we wish to position the end effector frame at a specific position, and with a specific orientation.

- We can parameterize the end effector frame by $\left(X_{e}, Y_{e}, \phi\right)$
- $\left(X_{e}, Y_{e}\right)$ give the position of the origin of the frame
- ϕ gives the orientation of the frame:

$$
T_{2}^{0}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & X_{e} \\
\sin \phi & \cos \phi & Y_{e} \\
0 & 0 & 1
\end{array}\right]
$$

- We can't do this with a two-link arm.
- Intuitively, we have three inputs (θ_{1} and θ_{2}) and three outputs.
- Our solution to the two-link arm shows that once we choose θ_{1} and θ_{2} the orientation of the end-effector frame is fully determined.

$>$ Add another link!

Three-Link Planar Arm

$$
T_{2}^{0}=\left[\begin{array}{ccc}
C_{123} & -S_{123} & a_{1} C_{1}+a_{2} C_{12}+a_{3} C_{123} \\
S_{123} & C_{123} & a_{1} S_{1}+a_{2} S_{12}+a_{3} S_{123} \\
0 & 0 & 1
\end{array}\right]
$$

$$
C_{123}=\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right), \text { etc. }
$$

- Given $\left(\boldsymbol{X}_{e}, \boldsymbol{Y}_{e}, \boldsymbol{\phi}\right)$, we know everything about the position and orientation of link 3!
- After all, link 3 is a rigid body, with a rigidly attached Frame 3.
- If we know the position and orientation of Frame 3, we know everything about Link 3!

Three-Link Planar Arm

Using simple trigonometry we obtain

$$
\begin{aligned}
o_{2, x}+a_{3} \cos \phi & =X_{e} \\
o_{2, y}+a_{3} \sin \phi & =Y_{e}
\end{aligned}
$$

And from this we immediately conclude

$$
\begin{gathered}
o_{2, x}=X_{e}-a_{3} \cos \phi \\
o_{2, y}=y_{e}-a_{3} \sin \phi
\end{gathered}
$$

And now, it's a 2-link arm problem

Link 1
As before, there are 0, 1, or two solutions (elbow down is shown).

Prismatic Joint no link offset

Joint 2 is prismatic.

- Define Frames 0 and 1 as before: x_{1} is collinear with the origin of Frame 0.
- Define Frame 2 such that x_{2} is collinear with x_{1}

$$
T_{2}^{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad T_{2}^{1}=\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Prismatic Joints

Joint 2 is prismatic.

- Define Frames 0 and 1 as before: x_{1} is collinear with the origin of Frame 0.
- Define Frame 2 such that x_{2} is collinear with x_{1}
$T_{2}^{0}=\left[\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & a_{i} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & \left(a_{1}+a_{2}\right) \cos \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} & \left(a_{1}+a_{2}\right) \sin \theta_{1} \\ 0 & 0 & 1\end{array}\right]$

Inverse Kinematic Solution

As before, let $\left(o_{2, x}, o_{2, y}\right)$ denote the coordinates of the origin of Frame 2.
Since $\theta_{2}=0$, the orientation of the endeffector frame is completely determined by θ_{1} :

$$
\theta_{1}=\tan ^{-1} \frac{o_{2, y}}{o_{2, x}}
$$

Once we have a solution for θ_{1}, we can directly solve the forward kinematic equations for a_{2} :

$$
\left(a_{1}+a_{2}\right) \cos \theta_{1}=o_{2, x} \Rightarrow a_{2}=\frac{o_{2, x}-a_{1} \cos \theta_{1}}{\cos \theta_{1}}
$$

Three-link RPR Arm

Joint 2 is prismatic.

$$
\begin{aligned}
T_{3}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & a_{3} \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & a_{3} \sin \theta_{3} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{3}\right) & -\sin \left(\theta_{1}+\theta_{3}\right) & \left(a_{1}+a_{2}\right) \cos \theta_{1}+a_{3} \cos \left(\theta_{1}+\theta_{3}\right) \\
\sin \left(\theta_{1}+\theta_{3}\right) & \cos \left(\theta_{1}+\theta_{3}\right) & \left(a_{1}+a_{2}\right) \sin \theta_{1}+a_{3} \sin \left(\theta_{1}+\theta_{3}\right) \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Inverse Kinematic Solution

As with the three-link RRR arm,

- Parameterize the end effector frame by $\left(X_{e}, Y_{e}, \phi\right)$
- Use ϕ and a_{3} to solve for $\left(o_{2, x}, o_{2, y}\right)$
- Solve for θ_{1} and a_{2} using the two-link RP solution given above.
- $\boldsymbol{\theta}_{3}=\boldsymbol{\phi}-\boldsymbol{\theta}_{1}$

Other Kinds of Robots

So far, we've looked only at simple planar arms with revolute joints.
Life becomes more complicated if

- We have prismatic joints with "link offsets"
- Robots are not planar (e.g., anthropomorphic arms)
- Robots have more joints than end-effector degrees of freedom (e.g., if a planar arm has four joint). Such robots are said to be redundant.

We'll need to find other ways to solve the inverse kinematics for such robots.

Let's see an example...

Prismatic Joint with link offset

Joint 2 is prismatic.

$$
T_{2}^{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & l_{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & a_{2} \\
0 & 1 & l_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Prismatic Joint with link offset

Three-link RPR Example

The geometric IKS solution promises to be painful, and this is still a simple planar arm.

$$
\begin{aligned}
T_{3}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & \left(a_{1}+a_{2}\right) \cos \theta_{1}-l_{2} \sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & \left(a_{1}+a_{2}\right) \sin \theta_{1}+l_{2} \cos \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & a_{3} \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & a_{3} \sin \theta_{3} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
C_{13} & -S_{13} & \left(a_{1}+a_{2}\right) C_{1}-l_{2} S_{1}+a_{3} C_{13} \\
S_{13} & C_{13} & \left(a_{1}+a_{2}\right) S_{1}+l_{2} C_{1}+a_{3} S_{13} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

More General Robot Arms

Imagine finding the geometric IKS solutions for more complicated arms in 3D work spaces...

Numerical Methods for Inverse Kinematics

- Denote the forward kinematic map by $F(q)$.
- $F(q)$ is a vector-valued function, each component gives one coordinate of the end-effector pose. If the end effector has m degrees of freedom and the robot has n joints, then

$$
F\left(q_{1}, \ldots, q_{n}\right)=\left[\begin{array}{c}
f_{1}(q) \\
\vdots \\
f_{m}(q)
\end{array}\right]
$$

- For the two-link arm, we would have

$$
F\left(\theta_{1}, \theta_{2}\right)=\left[\begin{array}{l}
x\left(\theta_{1}, \theta_{2}\right) \\
y\left(\theta_{1}, \theta_{2}\right)
\end{array}\right]
$$

- Denote by x^{d} the desired value of the end-effector pose.
- For the two-link arm we would have

$$
x^{d}=\left[\begin{array}{c}
o_{2, x}^{d} \\
o_{2, y}^{d}
\end{array}\right]
$$

- The inverse kinematic solution is the vector q^{d} such that $F\left(q^{d}\right)=x^{d}$.

Iterative Methods

Because we cannot solve $\boldsymbol{F}\left(\boldsymbol{q}^{d}\right)=x^{d}$ for \boldsymbol{q}^{d} (nonlinear equation with no closed-form solution), we take an iterative approach.

- Generate a sequence of values $\boldsymbol{q}^{0}, \boldsymbol{q}^{1}, \boldsymbol{q}^{2} \ldots$ until we find some \boldsymbol{q}^{N} such that $\boldsymbol{F}\left(\boldsymbol{q}^{N}\right)$ is sufficiently close to x^{d}, i.e.,

$$
\left\|F\left(\boldsymbol{q}^{N}\right)-x^{d}\right\|<\epsilon
$$

- In general, at each iteration, we compute q^{i+1} by

$$
q^{i+1}=q^{i}+\delta q
$$

- The only trick is to determine a good value for $\boldsymbol{\delta} \boldsymbol{q}$ at each iteration.

Gradient Descent

- In general, for gradient descent methods, the goal is to minimize the value of some function $L(q)$ by choosing the updates according to $\delta \boldsymbol{q}=-\nabla \mathrm{L}\left(\mathbf{q}^{\mathrm{i}}\right)$ where the gradient is w.r.t. \boldsymbol{q}.
- To solve the inverse kinematics problem, we wish to minimize the error between $\boldsymbol{F}(\boldsymbol{q})$ and $\boldsymbol{x}^{\boldsymbol{d}}$.
- Let's define $L(q)$ in terms of the squared error:

$$
L(q)=\frac{1}{2}\left(F(q)-x^{d}\right)^{T}\left(F(q)-x^{d}\right)
$$

- For this problem, we define the iteration as

$$
q^{i+1}=q^{i}-\alpha_{i} \nabla \mathrm{~L}\left(\mathbf{q}^{\mathrm{i}}\right)
$$

- We can use the scalar α_{i} to determine the magnitude of the step size.
- But what exactly is $\nabla \mathrm{L}\left(\mathbf{q}^{\mathrm{i}}\right)$

Calculating the Error Gradient $(n, m=2)$

$$
\begin{aligned}
L(q) & =\frac{1}{2}\left[\left(f_{1}(q)-x_{1}^{d}\right)\right. \\
& \left.\left.\quad f_{2}(q)-x_{2}^{d}\right)\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
f_{1}(q)-x_{1}^{d} \\
f_{2}(q)-x_{2}^{d}
\end{array}\right]} \\
\end{array}=\frac{1}{2}\left(f_{1}(q)-x_{1}^{d}\right)^{2}+\frac{1}{2}\left(f_{2}(q)-x_{2}^{d}\right)^{2}\right.
\end{aligned}
$$

$$
\nabla L(q)=\left[\begin{array}{c}
\frac{\partial L}{\partial q_{1}} \\
\frac{\partial L}{\partial q_{2}}
\end{array}\right]
$$

$$
\frac{\partial}{\partial q_{1}} L(q)=\frac{\partial}{\partial q_{1}} \frac{1}{2}\left\{\left(f_{1}(q)-x_{1}^{d}\right)^{2}+\left(f_{2}(q)-x_{2}^{d}\right)^{2}\right\} \quad \frac{\partial}{\partial q_{2}} L(q)=\frac{\partial}{\partial q_{2}} \frac{1}{2}\left\{\left(f_{1}(q)-x_{1}^{d}\right)^{2}+\left(f_{2}(q)-x_{2}^{d}\right)^{2}\right\}
$$

$$
=\frac{\partial f_{1}}{\partial q_{1}}\left(f_{1}(q)-x_{1}^{d}\right)+\frac{\partial f_{2}}{\partial q_{1}}\left(f_{2}(q)-x_{2}^{d}\right)
$$

$$
=\frac{\partial f_{1}}{\partial q_{2}}\left(f_{1}(q)-x_{1}^{d}\right)+\frac{\partial f_{2}}{\partial q_{2}}\left(f_{2}(q)-x_{2}^{d}\right)
$$

Stack these to obtain the gradient.

Calculating the Gradient (cont)

$\nabla L(q)=\left[\begin{array}{l}\frac{\partial L}{\partial q_{1}} \\ \frac{\partial L}{\partial q_{2}}\end{array}\right]=\left[\begin{array}{l}\frac{\partial f_{1}}{\partial q_{1}}\left(f_{1}(q)-x_{1}^{d}\right)+\frac{\partial f_{2}}{\partial q_{1}}\left(f_{2}(q)-x_{2}^{d}\right) \\ \frac{\partial f_{1}}{\partial q_{2}}\left(f_{1}(q)-x_{1}^{d}\right)+\frac{\partial f_{2}}{\partial q_{2}}\left(f_{2}(q)-x_{2}^{d}\right)\end{array}\right]$
We can write this as a matrix equation

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{2}}{\partial q_{1}} \\
\frac{\partial f_{1}}{\partial q_{2}} & \frac{\partial f_{2}}{\partial q_{2}}
\end{array}\right]\left[\begin{array}{l}
f_{1}(q)-x_{1}^{d} \\
f_{2}(q)-x_{2}^{d}
\end{array}\right] \\
& =J^{T}(\boldsymbol{q})\left(\boldsymbol{f}(\boldsymbol{q})-\boldsymbol{x}^{\boldsymbol{d}}\right)
\end{aligned}
$$

$$
\text { And we recognize that }\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{2}}{\partial q_{1}} \\
\frac{\partial f_{1}}{\partial q_{2}} & \frac{\partial f_{2}}{\partial q_{2}}
\end{array}\right]=J^{T}(q) \text {, the arm }
$$

Jacobian,

$$
\text { and that }\left[\begin{array}{l}
f_{1}(q)-x_{1}^{d} \\
f_{2}(q)-x_{2}^{d}
\end{array}\right]=\left(f(q)-x^{d}\right) \text { ! }
$$

And our gradient descent update becomes

$$
\boldsymbol{q}^{\boldsymbol{i + 1}}=q^{i}-\alpha_{i} \nabla \mathrm{~L}\left(\mathrm{q}^{\mathrm{i}}\right)=\boldsymbol{q}^{\boldsymbol{i}}+\boldsymbol{\alpha}_{\boldsymbol{i}} \boldsymbol{J}^{\boldsymbol{T}}\left(\boldsymbol{q}^{i}\right)\left(\boldsymbol{x}^{\boldsymbol{d}}-\boldsymbol{f}\left(\boldsymbol{q}^{\boldsymbol{i}}\right)\right)
$$

Inverse Jacobian Method

Let's take a look at the Taylor series expansion for the forward kinematic map around the i-th iteratate:

$$
F\left(q^{i}+\delta q^{i}\right)=F\left(q^{i}\right)+J\left(q^{i}\right) \delta q^{i}+\text { h.o.t. }
$$

Here, h.o.t. refers to higher order terms (these go to zero quickly as $\delta q^{i} \rightarrow 0$). If we neglect the higher order terms, the ideal choice for δq^{i} would be

$$
\delta q^{i}=q^{d}-q^{i}
$$

in which case we would step to the goal configuration in a single step!
In this case,

$$
F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right) \approx J\left(q^{i}\right) \delta q^{i}
$$

or

$$
x^{d}-F\left(q^{i}\right) \approx J\left(q^{i}\right) \delta q^{i}
$$

and this leads to the update

$$
\delta q^{i}=J^{-1}\left(q^{i}\right)\left(x^{d}-F\left(q^{i}\right)\right)
$$

Remember - we don't know q^{d}.
Happily, q^{d} does not appear on the r.h.s!

What about redundant arms...

- For the two-link arm, we can position the end-effector origin anywhere in the arm's workspace: two inputs (θ_{1}, θ_{2}) and two "outputs" (X_{e}, Y_{e}).
- For the three-link arm, we can position the end-effector origin anywhere in the arm's workspace, and we can choose the orientation of the frame: three inputs $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ and three "outputs" ($\left.X_{e}, Y_{e}, \phi\right)$.
- Suppose we had a four-link arm?
- Infinitely may ways to achieve a desired end-effector configuration $\left(X_{e}, Y_{e}, \phi\right)$.

The case for $n>m$

In this case, there are "extra" joints:

$$
F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right) \approx J\left(q^{i}\right) \delta q^{i}
$$

If we write this out in detail, we see

$$
\left[\begin{array}{c}
f_{1}\left(q^{i}+\delta q^{i}\right) \\
\vdots \\
f_{m}\left(q^{i}+\delta q^{i}\right)
\end{array}\right]-\left[\begin{array}{c}
f_{1}\left(q^{i}\right) \\
\vdots \\
f_{m}\left(q^{i}\right)
\end{array}\right] \approx\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial q_{1}} & \cdots & \frac{\partial f_{1}}{\partial q_{n}} \\
\frac{\partial f_{m}}{\partial q_{1}} & \cdots & \frac{\partial f_{m}}{\partial q_{n}}
\end{array}\right]\left[\begin{array}{c}
\delta q_{1}^{i} \\
\vdots \\
\delta q_{n}^{i}
\end{array}\right]
$$

Since J is not square, we can't invert it.

- Suppose $\operatorname{rank}(J)=m$.
- Then $J J^{T} \in \mathbb{R}^{m \times m}$ and $\operatorname{rank}\left(J J^{T}\right)=m$
- Then $\left(J J^{T}\right)^{-1}$ exists

What can we do with this...

Pseudoinverses

- Define $J^{+}=J^{T}\left(J J^{T}\right)^{-1}$
- Suppose we let $\delta q^{i}=J^{+}\left\{F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)\right\}$

Then

$$
J \delta q^{i}=J J^{+}\left\{F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)\right\}=F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)
$$

- In other words,

$$
J^{+}\left\{F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)\right\}=\delta q^{i}
$$

is a solution to the equation

$$
F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)=J\left(q^{i}\right) \delta q^{i}
$$

- We can use this to define our update law:

$$
\delta q^{i}=J^{+}\left\{F\left(q^{i}+\delta q^{i}\right)-F\left(q^{i}\right)\right\}
$$

$\cdot J^{+}$is called a pseudoinverse.

