Lecture 11:
Jacobians and
Trajectory Control

CS 3630!

Motivation

- Robot arms are used extensively in industry
- They will become more prevalent in the future
- Bottleneck is perception and grasping
- Deep learning is revolutionizing both
- Hone your 2D geometry skills
- Introduce basic notion of control
- Use of velocity relationships in robotics

Topics

1. Forward Kinematics Review
2. RRR Worked Example
3. Joint-Space Motion Control
4. The Manipulator Jacobian
5. Cartesian Motion Control

1. Forward Kinematics Review

- Kinematics describes the position and motion of a robot, without considering the forces required to cause the motion.
- Forward Kinematics: Given the value for each joint variable, q_{i}, determine the position and orientation of the endeffector (gripper, tool) frame.

Assigning Link Frames

x_{2} is collinear with the origin of Frame 1

- x_{1} is collinear with the origin of Frame 0
- End-effector frame T can be attached to link n in any manner that is convenient. - In this case, $n=2$, and we take Frame 2 to be the end-effector frame.

The Forward Kinematic Map

- The forward kinematic map gives the position and orientation of the end-effector frame as a function of the joint variables:

$$
T_{t}^{0}(q)=T_{1}^{0}\left(q_{1}\right) \ldots T_{i}^{i-1}\left(q_{i}\right) \ldots T_{n}^{n-1}\left(q_{n}\right) T_{t}^{n}
$$

End-effector in frame n

- For the two-link planar arm, we have

$$
\begin{gathered}
T_{2}^{0}=T_{1}^{0} T_{2}^{1} \text { End-effector }==\text { frame 2 } \\
T_{2}^{0}=\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & a_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & a_{2} \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

2-link Example

2. RRR Example

Demod

- Three revolute joints
- End-effector - Link 3 frame
- $a_{1}=3.5, a_{2}=3.5, a_{3}=2$

RRR example, cont'd

$$
\begin{aligned}
T_{1}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 3.5 \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & 3.5 \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right] \\
T_{2}^{1} & =\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 3.5 \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 3.5 \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right] \\
T_{3}^{2} & =\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 2 \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & 2 \sin \theta_{3} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- End-effector == frame 3

(a) $\theta_{1}=112^{\circ}, \theta_{2}=-52^{\circ}$, and $\theta_{3}=-60^{\circ}$

RRR example, cont'd

- Multiply 3 matrices
- Note R in upper left
- Check orientation!

(b) $\theta_{1}=60^{\circ}, \theta_{2}=-45^{\circ}$, and $\theta_{3}=-90^{\circ}$

$$
T_{t}^{s}(q)=\left(\begin{array}{ccc}
\cos \beta & -\sin \beta & 3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
\sin \beta & \cos \beta & 3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
0 & 0 & 1
\end{array}\right)
$$

with $\alpha=\theta_{1}+\theta_{2}$ and $\beta=\theta_{1}+\theta_{2}+\theta_{3}$, the latter being the tool orientation.

3. Motion Control

- Trajectory following is important
- Spray-painting
- Sealing
- Welding
- Three main approaches:
- Trajectory replay
- Joint-space Motion Control
- Cartesian Motion Control

Trajectory Replay

- Teaching by demonstration
- Define a set of waypoints by "showing" the robot
- Similar to keyframe animation in graphics
- Still need to interpolate between waypoints

Joint-Space Motion Control

- Desired tool pose from waypoint or inverse kinematics ${ }^{1}$.

Proportional Feedback Control

- Feedback law:

$$
q_{t+1}=q_{t}+K_{p}\left(q_{d}-q_{t}\right)
$$

- At every time step:
- Calculate joint space error $e_{t}=q_{d}-q_{t}$
- Increase of decrease proportional to e_{t}
- K_{p} is proportional gain parameter

Proportional Feedback Control

- Properties:
- Closer to goal -> smaller steps
- Automatically reverses sign if we overshoot
- Generalizes to vector-valued control
- Value of Kp really matters:
- too high: overshoot
- too low: slow convergence
- Special case of PID control

4. The Manipulator Jacobian

Dexood

- Velocity of end-effector if we move any given joint?
- Given by arrows:
- R=joint 1
- G=joint 2
- B=joint 3

Jacobian = linear map

- Linear relationship between joint space velocity and cartesian velocity (pose space!)

$$
[\dot{x}, \dot{y}, \dot{\theta}]^{T}=J(q) \dot{q}
$$

- J is $3 x n$ matrix:

$$
J(q) \triangleq\left[\begin{array}{llll}
J_{1}(q) & J_{2}(q) & \ldots & J_{n}(q)
\end{array}\right]
$$

- Each $J_{i}(q)$ column corresponds to arrow.
- Partial derivative of pose wrpt q_{i}

Worked Example: RRR manipulator

- Remember:

$$
T_{t}^{s}(q)=\left(\begin{array}{ccc}
\cos \beta & -\sin \beta & 3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
\sin \beta & \cos \beta & 3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
0 & 0 & 1
\end{array}\right)
$$

- Extracting x, y, theta:

$$
\left[\begin{array}{l}
x(q) \\
y(q) \\
\theta(q)
\end{array}\right]=\left[\begin{array}{c}
3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
\beta
\end{array}\right]
$$

- So what is Jacobian???

Worked Example: RRR manipulator

- x, y, theta:

$$
\left[\begin{array}{l}
x(q) \\
y(q) \\
\theta(q)
\end{array}\right]=\left[\begin{array}{c}
3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
\beta
\end{array}\right]
$$

- Jacobian:
$\left(\begin{array}{ccc}-3.5 \sin \theta_{1}-3.5 \sin \alpha-2.5 \sin \beta & -3.5 \sin \alpha-2.5 \sin \beta & -2 \sin \beta \\ 3.5 \cos \theta_{1}+3.5 \cos \alpha+2.5 \cos \beta & 3.5 \cos \alpha+2.5 \cos \beta & 2 \cos \beta \\ 1 & 1 & 1\end{array}\right)$

5. Cartesian Motion Control

- Convert direction in cartesian space to direction in joint space
- Yields straight-line paths

How do we convert?

- We want a straight line!
- Calculate (scaled) direction of the line
- Error in cartesian space:

$$
E_{t}(q)=\left[\begin{array}{l}
e_{x} \\
e_{y} \\
e_{\theta}
\end{array}\right]=\left[\begin{array}{c}
x_{d}-x\left(q_{t}\right) \\
y_{d}-y\left(q_{t}\right) \\
\theta_{d} \ominus \theta\left(q_{t}\right)
\end{array}\right]
$$

- Then, simple proportional control:

$$
q_{t+1}=q_{t}+K_{p} J\left(q_{t}\right)^{-1} E_{t}(q)
$$

Summary

1. Forward Kinematics is just multiplying transforms
2. We went through an RRR Worked Example
3. Joint-Space Motion Control creates paths that minimize distance in joint space
4. The Manipulator Jacobian provides a relationship between cartesian and joint-space velocities/displacements
5. Cartesian Motion Control exploits this relationship to provide predictable paths in cartesian space
