-
o
O
o
Yy
O

Lecture 11

d

ians dan

Jacob

Trajectory Control

Motivation

* Robot arms are used extensively in industry

* They will become more prevalent in the future
* Bottleneck is perception and grasping
* Deep learning is revolutionizing both

* Hone your 2D geometry skills
* Introduce basic notion of control

» Use of velocity relationships in robotics

Topics

Forward Kinematics Review
RRR Worked Example
Joint-Space Motion Control
The Manipulator Jacobian

RN

Cartesian Motion Control

1. Forward Kinematics Review

* Kinematics describes the position and
motion of a robot, without considering
the forces required to cause the motion.

* Forward Kinematics: Given the value for
each joint variable, q;, determine the
position and orientation of the end-

effector (gripper, tool) frame. (\)

A
*
*
*
*
*
*
*
‘0
*

X, is collinear with the
origin of Frame 1

Assigning Link Frames .~

.t
PE
an
a®
al
.
st
a®
al
at®
a®
at
at®
at®
““““
at®
at
al
at®
a®
a®
at®
at®
a®
a®
at®
a®
a®
a®

at®
a®
““““
a8
u®

X0 6, is the angle from xyto x4

End-effector frame T can be attached to link n in any manner that is convenient.
In this case, n = 2, and we take Frame 2 to be the end-effector frame.

he Forward Kinematic Map

* The forward kinematic map gives the position and orientation of the
end-effector frame as a function of the joint variables:

T (q) = T(qr) ... T} (qi) ... T)T}

End-effector in frame n

* For the two-link planar arm, we have

0 _ 401
T2 o Tl T2 End-effector == frame 2
‘cosf; —sinf; a;cosB][cosf, —sinb, a,cosbO,
T; =|sin6; cos@, a;sinf,||sinf, cosh, a,sinb,
0 0 1 0 0 1

2-link Example

‘$
*
*
‘$
*

A
a, sin(6;+6,)

01 + 0,

AN >

a, cos 64

‘cos(6,+6,) —sin(8,;+60,) a;cosB; + a,cos(6,+6,)
T, = |sin(6,+6,) cos(6,+6,) a,sinb; + a,sin(6;+6,)
0 0 1

2. RRR Example

(-

(=

Y
% %
102%50%) %

I

* Three revolute joints
 End-effector — Link 3 frame
* 3,=3.5, a,=3.5, a3=2

RRR example, cont’d

iy

cos 61
sin 91

0

cos 09
sin 0o

0

cos 03
sin 63

0

— sin 91
cos 04
0

— sin (92
cos 0o
0

— sin 03
cos b3
0

3.5cosf;
3.5 sin 04

1

3.5cosfy
3.5 sin 09

1

2cos s |

2 sin 03
1

e End-effector == frame 3

(a) 91 — 1120, 92 — —520, and 93 = —60°

RRR example, cont’d

* Multiply 3 matrices
* Note R in upper left
* Check orientation!

(b) 91 — 600, 92 — —450, and (93 = —90°

cosf3 —sinf 3.5cosf; + 3.5cosa+ 2cos
T7(q) = | sinf cosfB 3.5sinb; + 3.5sina + 2sin
0 0 1

with « = 01 + 05 and 3 = 61 + 05 + 63, the latter being the tool orientation.

3. Motion Control

* Trajectory following is important
* Spray-painting
e Sealing
* Welding

* Three main approaches:
* Trajectory replay
 Joint-space Motion Control
* Cartesian Motion Control

Image by Roboguru

Trajectory Replay |

* Teaching by demonstration

* Define a set of waypoints by
“showing” the robot

 Similar to keyframe
animation in graphics

e Still need to interpolate
between waypoints

Joint-Space Motion Control
Dermno]

5=

4.5,6520.0

 Desired tool pose from waypoint or inverse kinematics?.

1K = next lecture!

Proportional
~eedback Control Q J 2:_2,0.0

* Feedback law:
g1 = q + Kp(qq — q:)

* At every time step:
* Calculate joint space error €t — (4 — (t
* Increase of decrease proportional to e,
* K, is proportional gain parameter

Proportional
~eedback Control Q J 2:.2,0.0

* Properties:
* Closer to goal -> smaller steps
* Automatically reverses sign if we overshoot
* Generalizes to vector-valued control

* Value of Kp really matters:
* too high: overshoot
* too low: slow convergence

I I 1 I 1 I
VA_,,:;AVery' f[ast response (good), but poor stabilﬁt',r‘ (bad):

T e s -
I
|

Setppint (a sfep) ‘ . | .
/ Acceptable stability and medium fastness (good compromise)
I 1 I 1 I

 Special case of PID control

https://arduinoplusplus.wordpress.com/2017/06/21/

0 : ; i 3 : : | ! : pid-control-experiment-tuning-the-controller/
0 2 4 6 8 10 12 14 16 18 20

https://arduinoplusplus.wordpress.com/2017/06/21/pid-control-experiment-tuning-the-controller/

4. The Manipulator Jacobian Dero]

* Velocity of end-effector
if we move any given
joint?

* Given by arrows:

* R=joint 1

.
.
.
.
.
.
.y
.
.
.
.
.
o
.
oy

5.5,35,-0.0

* B=joint 3

Jacobian = linear map

* Linear relationship between joint space

velocity and cartesian velocity (pose

T, 1, 9]T = J(q)q
* Jis 3xn matrix:

J(q) = | Nlg) J2(q) ... Julq) |

* Each J(q) column corresponds to arrow.

11>

* Partial derivative of pose wrpt g;

Worked Example: RRR manipulator

* Remember:

cos 3

T7(q) = | sinpg

0

* Extracting x, y, theta:

e So what is Jaco

cos 3

—sinf3 3.5cosf; + 3.5cosa + 2cos 3

3.5sinf + 3.5sina + 2sin 3
1

3.5cos0] + 3.5cosav + 2cos 3

3.5sinf; + 3.5sina + 2sin 3

Worked Example: RRR manipulator

* X, Y, theta:

x(q) - 3.5cosfy +3.5cosax+2cosf3
ylg) | = | 3.5sinf; + 3.5sina + 2sin 3
- 0(q) | ! 3)

e Jacobian:

—3.5sinf; — 3.5sina — 2.5sin3 —3.5sina — 2.5sin3 —2sin/3
3.5cos0] +3.5cosa+ 2.5¢cos 3.5cosa+ 2.5¢cos 2cos
1 1 1

5. Cartesian Motion Control

* Convert direction in cartesian
space to direction in joint space

* Yields straight-line paths

Sl

4.0,4.9,0.0

How do we convert?

* We want a straight line!

 Calculate (scaled) direction of the line
* Error in cartesian space:

E:(q)

€.r
€y
€y

rqg — x(qt)
Ya — Y(q:)

| 040 0(qt)

* Then, simple proportional control:

Ji+1 = Gt +]\',,J(q,)_lE,(q)

Small print: we have to take when subtracting angles, as they are not unique

4.0,4.9,0.0

I

T'(q:)

Summary

1. Forward Kinematics is just multiplying transforms
2. We went through an RRR Worked Example

Joint-Space Motion Control creates paths that minimize
distance in joint space

4. The Manipulator Jacobian provides a relationship between
cartesian and joint-space velocities/displacements

5. Cartesian Motion Control exploits this relationship to
provide predictable paths in cartesian space

