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Robot Kinematics:
Planar Arms



Robot Arms
• A robot arm (aka serial link manipulator) consists of a series of rigid 

links, connected by joints (motors), each of which has a single degree 
of freedom.
• Revolute Joint: Single degree of freedom is rotation about an axis.

• Prismatic joint: Single degree of freedom is translation along an axis.

Revolute Joint Prismatic Joint



Other Types of Joints

There are several types of joint that 
have more than one degree of 
freedom – but we do not consider 
those in this class.

In fact, all of the higher degree-of-
freedom joints can be described by 
combinations of one degree-of-
freedom joints, so there is no need to 
explicitly consider these.



Describing Serial Link Arms
• Number the links in sequence. 
• For a robot with 𝑛 joints:

• Base (which does not move) is Link 0.
• End-effector (tool) is attached to Link 𝑛.
• Joint 𝑖 connects Link 𝑖 − 1 to Link 𝑖
• We define the joint variable 𝑞𝑖 for joint 𝑖 as:

𝑞𝑖 = ቐ
𝜃𝑖 if joint 𝑖 is revolute

𝑑𝑖 if joint 𝑖 is prismatic

Two-link Planar Arm: 
• 𝑛 = 2, 
• both links are always coplanar (no rotation 

out of the plane). 
• 𝑞1 = 𝜃1, 𝑞2 = 𝜃2



Manipulator Kinematics
• Kinematics describes the position and motion of a robot, without 

considering the forces required to cause the motion.

• Forward Kinematics:  Given the value for each joint variable, 𝑞𝑖 ,
determine the position and orientation of the end-effector (gripper, 
tool) frame.

The basic idea:  
➢Assign lots of coordinate frames, 

and express these frames in terms 
of the joint variables, 𝑞𝑖.



General Approach
• Each link is a rigid body.

• We know how to describe the position and orientation of a rigid body:
• Attach a coordinate frame to the body.

• Specify the position and orientation of the coordinate frame relative to some 
reference frame.

• If two links, say link 𝑖 − 1 and link 𝑖 are connected by a single joint, then 
the relationship between the two frames can be described by a 
homogeneous transformation matrix 𝑇𝑖

𝑖−1 which will depend only on 
the value of the joint variable!

➢ Let’s have a quick review of Homogeneous Transformations….



Specifying Orientation in the Plane

𝜽

𝜽

𝑥0

𝑦0

𝑥1

𝑦1

sin 𝜃

cos 𝜃

Given two coordinate frames with a common origin, we describe the orientation of Frame 1 w.r.t. 
Frame 0 by:

Specifying the directions of 𝒙𝟏 and 𝒚𝟏 w.r.t. Frame 0 by projecting onto 𝒙𝟎 and 𝒚𝟎. 

𝑥1
0 =

𝑥1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0

=
cos 𝜃
sin 𝜃

Notation:  𝑥1
0 denotes 

the x-axis of Frame 1, 
specified w.r.t Frame 0. 

𝑦1
0 =

𝑦1 ⋅ 𝑥0
𝑦1 ⋅ 𝑦0

=
−sin 𝜃
cos 𝜃

We obtain 𝑦1
0 in the 

same way. 



Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a rotation matrix: 𝑅1
0 =

cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, i.e., 𝑐1 ⋅ 𝑐2 = 0.
3. det 𝑅 = +1

➢ The first two properties imply that the matrix 𝑅 is orthogonal.
➢ The third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 2 × 2 rotation matrices is called the Special Orthogonal Group of order 2, 
or, more commonly 𝑺𝑶(𝟐).

This concept generalizes to 𝑺𝑶 𝒏 for 𝑛 × 𝑛 rotation matrices.  

For such matrices 𝑹−𝟏= 𝑹𝑻



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝑹𝟏
𝟎 𝑷𝟏

Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1



𝑥1

𝑦1

Coordinate Transformations (rotation only)

𝑥0

𝑦0

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑝0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝑹𝟏
𝟎 𝑷𝟏

𝑷𝟎 = 𝑹𝟏
𝟎 𝑷𝟏



Specifying Pose in the Plane

𝑥0

Suppose we now translate Frame 1 (no new rotatation). 
What are the coordinates of 𝑃 w.r.t. Frame 0? 

Since we merely translated 𝑃 by a fixed 
vector 𝑑, simply add the offset to our 
previous result!

𝑑𝑥

𝒅𝟎 =
𝒅𝒙

𝒅𝒚

𝑦0

𝑃

𝑑

𝑑𝑦

𝑥1

𝑦1

𝑑

𝑷𝟎 = 𝑹𝟏
𝟎 𝑷𝟏 + 𝒅𝟎



Homogeneous Transformations

𝑷𝟎

1
= 𝑹𝟏

𝟎𝑷𝟏 + 𝒅𝟎

1
=

𝑹𝟏
𝟎 𝒅𝟎

02 1
𝑷𝟏

1

We can simplify the equation for coordinate transformations 
by augmenting the vectors and matrices with an extra row: 

The set of matrices of the form
𝑅 𝑑
0𝑛 1

, where 𝑅 ∈ 𝑆𝑂(𝑛) and 𝑑 ∈ ℝ𝑛 is called 

the Special Euclidean Group of order 𝒏, or 𝑆𝐸(𝑛).

in which 02 = 0 0

This is just our eqn from 
the previous page



Homogeneous Transformations

𝑷𝟎

1
= 𝑹𝟏

𝟎𝑷𝟏 + 𝒅𝟎

1
=

𝑹𝟏
𝟎 𝒅𝟎

02 1
𝑷𝟏

1

We can simplify the equation for coordinate transformations 
by augmenting the vectors and matrices with an extra row: 

෨𝑃0 = 𝑇1
0 ෨𝑃1

෨𝑃0 = 𝑷𝟎

1
, ෨𝑃1 = 𝑷𝟏

1

➢𝐓𝟏
𝟎 is called a homogeneous transformation matrix

➢ ෩𝐏𝟎 are the homogeneous coordinates for 𝐏𝟎



Composition of Transformations

𝑥0

𝑦1

𝑦2

𝑦0
𝑥1

𝑥2

𝑃

෨𝑃1 = 𝑇2
1 ෨𝑃2

෨𝑃0 = 𝑇1
0 ෨𝑃1

From our previous results, we know:

෨𝑃0 = 𝑇1
0𝑇2

1 ෨𝑃2

෨𝑃0 = 𝑇2
0 ෨𝑃2

𝑇2
0 = 𝑇1

0𝑇2
1

But we also know:

𝑇1
0

𝑇2
1

𝑇2
0

This is the composition law for 
homogeneous transformations.



What about robot arms??

𝑇1
0

𝑇2
1

𝑇2
0

• Attach a coordinate frame to each link of the 
robot!

• Frame 0 is attached to Link 0, which is merely 
the fixed mounting point to the environment.

• Now, the trick is to express 𝑇𝑖
𝑖−1 as a function 

of 𝜃𝑖



A special case

𝑥0

𝑦1

𝑦2𝑦0

𝑥1

𝑥2

𝑇2
1 =

cos𝜃2 −sin 𝜃2 𝑎2 cos 𝜃2
sin 𝜃2 cos 𝜃2 𝑎2 sin 𝜃2
0 0 1

𝑇1
0 =

cos 𝜃1 −sin 𝜃1 𝑎1 cos 𝜃1
sin 𝜃1 cos 𝜃1 𝑎1 sin 𝜃1
0 0 1

𝜃1

𝜃2𝑎1 𝑎2

𝑇𝑖
𝑖−1 =

cos 𝜃𝑖 −sin 𝜃𝑖 0
sin 𝜃𝑖 cos 𝜃𝑖 0
0 0 1

1 0 𝑎𝑖
0 1 0
0 0 1

=
cos 𝜃𝑖 −sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖
0 0 1

Suppose the axis 𝑥𝑖 is collinear with the origin of Frame 𝑖 − 1:
• 𝑥1 is collinear with the origin of Frame 0
• 𝑥2 is collinear with the origin of Frame 1

Use this to simplify link coordinate frames!



Assigning Coordinate Frames to Links

• Frame 0 (the base frame) has its origin at the center of Joint 1 (on the axis of 
rotation).

• Frame 𝑖 is rigidly attached to Link 𝑖, and has it’s origin at the center of Joint 
𝑖 + 1.

• The 𝑥𝑖-axis is collinear with the origin of Frame 𝑖 − 1.

• The link length, 𝑎𝑖 is the distance between the origins of Frames 𝑖 and 𝑖 − 1.

• The homogeneous transformation that relates adjacent frames is given by:

𝑇𝑖
𝑖−1 =

cos 𝜃𝑖 −sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖
0 0 1



Assigning Link Frames

• 𝑥1 is collinear with the origin of Frame 0

𝑥0

𝑦0

𝑥1

𝑥2 is collinear with the 
origin of Frame 1

𝑥2

𝜃1 is the angle from 𝑥0to 𝑥1

𝜃2 is the angle from 𝑥1to 𝑥2

• Frame 𝑛 is the end-effector frame. It can be attached to link 𝑛 in any manner that is 
convenient. 

• In this case, 𝑛 = 2, so Frame 2 is the end-effector frame.



The Forward Kinematic Map
• The forward kinematic map gives the position and orientation of the 

end-effector frame as a function of the joint variables:

𝑇𝑛
0 = 𝐹(𝑞1, … , 𝑞𝑛)

• For the two-link planar arm, we have

𝑇2
0 =

cos 𝜃1 −sin 𝜃1 𝑎1 cos 𝜃1
sin 𝜃1 cos 𝜃1 𝑎1 sin 𝜃1
0 0 1

cos 𝜃2 −sin 𝜃2 𝑎2 cos 𝜃2
sin 𝜃2 cos 𝜃2 𝑎2 sin 𝜃2
0 0 1

=
cos(𝜃1+𝜃2) − sin(𝜃1+𝜃2) 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)
sin(𝜃1+𝜃2) cos(𝜃1+𝜃2) 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)

0 0 1



Simple Geometry…

𝜃2

𝑎1 cos 𝜃1

𝑎1 sin 𝜃1
𝑎2 cos(𝜃1+𝜃2)

𝑎2 sin(𝜃1+𝜃2)

𝜃1

𝜃1 + 𝜃2



Simple Geometry…

𝜃1 + 𝜃2

𝑎1 cos 𝜃1

𝑎1 sin 𝜃1
𝑎2 cos(𝜃1+𝜃2)

𝑎2 sin(𝜃1+𝜃2)

𝑇2
0 =

cos(𝜃1+𝜃2) − sin(𝜃1+𝜃2) 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)
sin(𝜃1+𝜃2) cos(𝜃1+𝜃2) 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)

0 0 1



Three-Link Planar Arm 𝑥3
𝑦3

𝑇2
0 =

𝐶123 −𝑆123 𝑎1𝐶1 + 𝑎2𝐶12 + 𝑎3𝐶123
𝑆123 𝐶123 𝑎1𝑆1 + 𝑎2𝑆12 + 𝑎3𝑆123
0 0 1

𝑇2
0 =

cos 𝜙 − sin𝜙 𝑋𝑒
sin𝜙 cos𝜙 𝑌𝑒
0 0 1

𝐶123 = cos 𝜃1 + 𝜃2 + 𝜃3 , etc.

(𝑋𝑒 , 𝑌𝑒)

𝜙

We can parameterize the end 
effector frame by (𝑿𝒆, 𝒀𝒆, 𝝓)



About the Forward Kinematic Map

• For the two-link arm, we can position the end-effector origin anywhere in the 
arm’s workspace: two inputs (𝜃1, 𝜃2) and two “outputs” (𝑋𝑒 , 𝑌𝑒).

• For the three-link arm, we can position the end-effector origin anywhere in the 
arm’s workspace, and we can choose the orientation of the frame: three inputs 
(𝜃1, 𝜃2, 𝜃3) and three “outputs” (𝑋𝑒 , 𝑌𝑒 , 𝜙).

• Suppose we had a four-link arm?
• Infinitely may ways to achieve a desired end-effector configuration (𝑋𝑒 , 𝑌𝑒 , 𝜙).



More General Robot Arms

• With a bit of work, this can be generalized to 
arbitrary robot arms.

• We shall not do this bit of work in CS3630.


