CS 3630

Robot Kinematics: Planar Arms

Robot Arms

- A robot arm (aka serial link manipulator) consists of a series of rigid links, connected by joints (motors), each of which has a single degree of freedom.
- Revolute Joint: Single degree of freedom is rotation about an axis.
- Prismatic joint: Single degree of freedom is translation along an axis.

Revolute Joint

Prismatic Joint

Other Types of Joints

There are several types of joint that have more than one degree of freedom - but we do not consider those in this class.

In fact, all of the higher degree-offreedom joints can be described by combinations of one degree-offreedom joints, so there is no need to explicitly consider these.

Prismatic (P)

Revolute (R)

Spherical (S)

Cylindrical (C)

Helical (H)

Describing Serial Link Arms

- Number the links in sequence.
- For a robot with n joints:
- Base (which does not move) is Link 0 .
- End-effector (tool) is attached to Link n.
- Joint i connects Link $i-1$ to Link i
- We define the joint variable q_{i} for joint i as:

$$
q_{i}=\left\{\begin{array}{l}
\theta_{i} \text { if joint } i \text { is revolute } \\
d_{i} \text { if joint } i \text { is prismatic }
\end{array}\right.
$$

Two-link Planar Arm:

- $n=2$,
- both links are always coplanar (no rotation out of the plane).

Manipulator Kinematics

- Kinematics describes the position and motion of a robot, without considering the forces required to cause the motion.
- Forward Kinematics: Given the value for each joint variable, q_{i}, determine the position and orientation of the end-effector (gripper, tool) frame.
$>$ Assign lots of coordinate frames, and express these frames in terms of the joint variables, q_{i}.

General Approach

- Each link is a rigid body.
- We know how to describe the position and orientation of a rigid body:
- Attach a coordinate frame to the body.
- Specify the position and orientation of the coordinate frame relative to some reference frame.
- If two links, say link $i-1$ and link i are connected by a single joint, then the relationship between the two frames can be described by a homogeneous transformation matrix T_{i}^{i-1} which will depend only on the value of the joint variable!
> Let's have a quick review of Homogeneous Transformations....

Specifying Orientation in the Plane

Given two coordinate frames with a common origin, we describe the orientation of Frame 1 w.r.t. Frame 0 by:

Specifying the directions of x_{1} and y_{1} w.r.t. Frame 0 by projecting onto x_{0} and y_{0}.

Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a rotation matrix: $\quad R_{1}^{0}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
All rotation matrices have certain properties:

1. The two columns are each unit vectors.
2. The two columns are orthogonal, i.e., $c_{1} \cdot c_{2}=0$.

$$
\text { For such matrices } R^{-1}=R^{T}
$$

3. $\operatorname{det} R=+1$
$>$ The first two properties imply that the matrix R is orthogonal.
$>$ The third property implies that the matrix is special! (After all, there are plenty of orthogonal matrices whose determinant is -1 , not at all special.)

The collection of 2×2 rotation matrices is called the Special Orthogonal Group of order 2, or, more commonly $\underline{\boldsymbol{S O}(2)}$.

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

To obtain the coordinates of P w.r.t. Fra
x_{0} and y_{0} axes:

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$. We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

$$
\begin{aligned}
& \text { To obtain the coordinates of } P \text { w.r.t. Frame } 0 \text {, we project } P \text { onto the } \\
& x_{0} \text { and } y_{0} \text { axes: }
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates
 $$
P=p_{x} x_{1}+p_{y} y_{1}
$$

Specifying Pose in the Plane

Suppose we now translate Frame 1 (no new rotatation). What are the coordinates of P w.r.t. Frame 0?

Since we merely translated P by a fixed vector d, simply add the offset to our previous result!

Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

This is just our eqn from

 the previous page
in which $0_{2}=\left[\begin{array}{ll}0 & 0\end{array}\right]$

The set of matrices of the form $\left[\begin{array}{ll}R & d \\ 0_{n} & 1\end{array}\right]$, where $R \in S O(n)$ and $d \in \mathbb{R}^{n}$ is called
the Special Euclidean Group of order n, or $S E(n)$.

Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

$$
\begin{array}{r}
{\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{0}} \\
1
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{R}_{\mathbf{1}}^{\mathbf{1}} \boldsymbol{P}^{\mathbf{1}}+\boldsymbol{d}^{\mathbf{0}} \\
1
\end{array}\right]=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\boldsymbol{R}_{\mathbf{1}} & \boldsymbol{d}^{\mathbf{0}} \\
0_{2} & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{1}} \\
1
\end{array}\right]} \\
\tilde{P}^{0}=\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{0}} \\
1
\end{array}\right], \tilde{P}^{1}=\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{1}} \\
1
\end{array}\right] \\
\widetilde{P}^{0}=T_{1}^{0} \widetilde{P}^{1}
\end{array}\right.}
\end{array}
$$

$>\mathrm{T}_{1}^{0}$ is called a homogeneous transformation matrix
$>\widetilde{\mathrm{P}}^{\mathbf{0}}$ are the homogeneous coordinates for $\mathrm{P}^{\mathbf{0}}$

Composition of Transformations

From our previous results, we know:

$$
\left.\begin{array}{l}
\tilde{P}^{0}=T_{1}^{0} \tilde{P}^{1} \\
\tilde{P}^{1}=T_{2}^{1} \tilde{P}^{2}
\end{array}\right\} \begin{aligned}
& \longrightarrow
\end{aligned}
$$

This is the composition law for homogeneous transformations.

$$
T_{2}^{0}=T_{1}^{0} T_{2}^{1}
$$

What about robot arms??

A special case

Suppose the axis x_{i} is collinear with the origin of Frame $i-1$:

- x_{1} is collinear with the origin of Frame 0
- x_{2} is collinear with the origin of Frame 1

$$
T_{i}^{i-1}=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & a_{i} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} & a_{i} \sin \theta_{i} \\
0 & 0 & 1
\end{array}\right]
$$

Assigning Coordinate Frames to Links

- Frame 0 (the base frame) has its origin at the center of Joint 1 (on the axis of rotation).
- Frame i is rigidly attached to Link i, and has it's origin at the center of Joint $i+1$.
- The x_{i}-axis is collinear with the origin of Frame $i-1$.
- The link length, a_{i} is the distance between the origins of Frames i and $i-1$.
- The homogeneous transformation that relates adjacent frames is given by:

$$
T_{i}^{i-1}=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} & a_{i} \sin \theta_{i} \\
0 & 0 & 1
\end{array}\right]
$$

Assigning Link Frames

- Frame n is the end-effector frame. It can be attached to link n in any manner that is convenient.
- In this case, $n=2$, so Frame 2 is the end-effector frame.

The Forward Kinematic Map

- The forward kinematic map gives the position and orientation of the end-effector frame as a function of the joint variables:

$$
T_{n}^{0}=F\left(q_{1}, \ldots, q_{n}\right)
$$

- For the two-link planar arm, we have

$$
\begin{aligned}
T_{2}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & a_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & a_{2} \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Simple Geometry...

Simple Geometry...

Three-Link Planar Arm

We can parameterize the end :

$$
C_{123}=\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right), \text { etc. }
$$

$$
T_{2}^{0}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & X_{e} \\
\sin \phi & \cos \phi & Y_{e} \\
0 & 0 & 1
\end{array}\right]
$$

About the Forward Kinematic Map

- For the two-link arm, we can position the end-effector origin anywhere in the arm's workspace: two inputs (θ_{1}, θ_{2}) and two "outputs" (X_{e}, Y_{e}).
- For the three-link arm, we can position the end-effector origin anywhere in the arm's workspace, and we can choose the orientation of the frame: three inputs $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ and three "outputs" ($\left.X_{e}, Y_{e}, \phi\right)$.
- Suppose we had a four-link arm?
- Infinitely may ways to achieve a desired end-effector configuration $\left(X_{e}, Y_{e}, \phi\right)$.

More General Robot Arms

- With a bit of work, this can be generalized to arbitrary robot arms.
- We shall not do this bit of work in CS3630.

a

