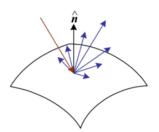
Dense Stereo



Some Slides by Forsyth & Ponce, Jim Rehg, Sing Bing Kang (Does not line up well with Szeliski book)

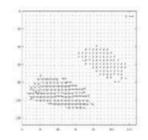


2. Image Formation

3. Image Processing

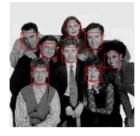
6-7. Structure from Motion

4. Features



8. Motion

11. Stereo

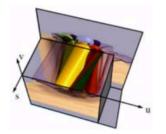


14. Recognition

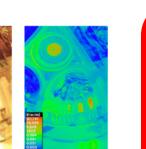
5. Segmentation

9. Stitching

12. 3D Shape



13. Image-based Rendering



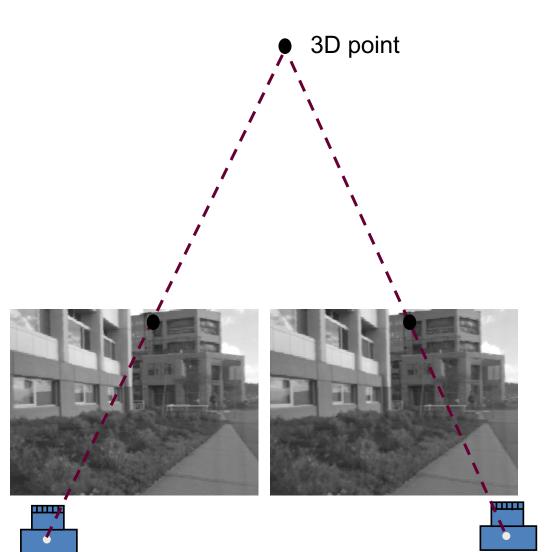
10. Computational Photography

Etymology

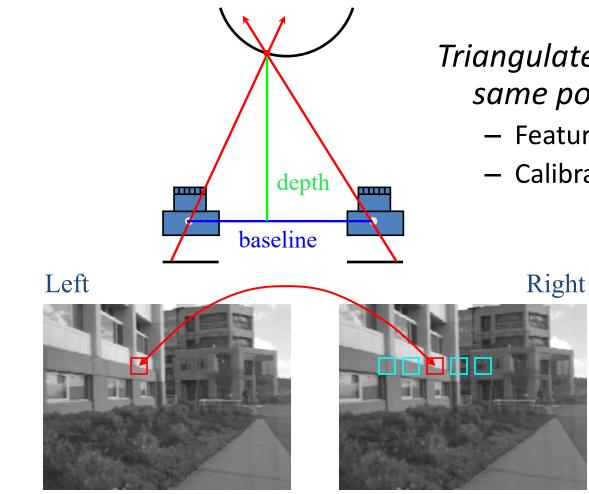
Stereo comes from the Greek word for solid (στερεο), and the term can be applied to any system using more than one channel

Effect of Moving Camera

- As camera is shifted (viewpoint changed):
 - 3D points are projected to different 2D locations
 - Amount of shift in projected 2D location depends on depth
- 2D shifts=Parallax



Basic Idea of Stereo



Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Matching correlation windows across scan lines

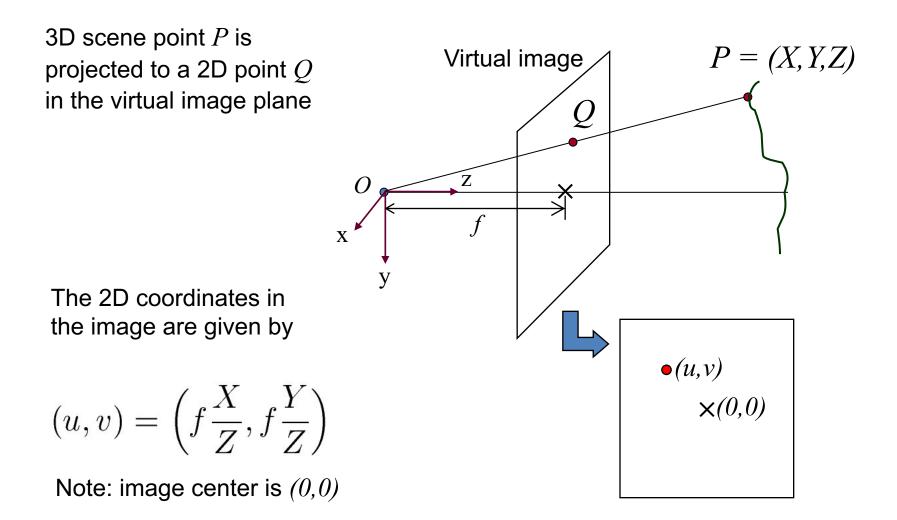
Why is Stereo Useful?

- Passive and noninvasive
- Robot navigation (path planning, obstacle detection)
- 3D modeling (shap) analysis, reverse engineering, visualization)
- Photorealistic rendering

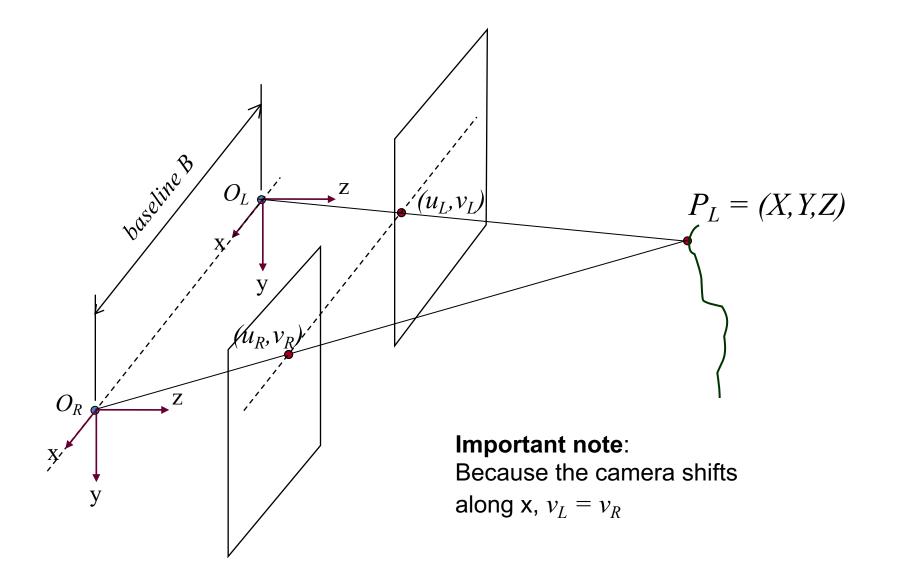
Outline

- Pinhole camera model
- Basic (2-view) stereo algorithm
 - Equations
 - Window-based matching (SSD)
 - Dynamic programming
- Multiple view stereo

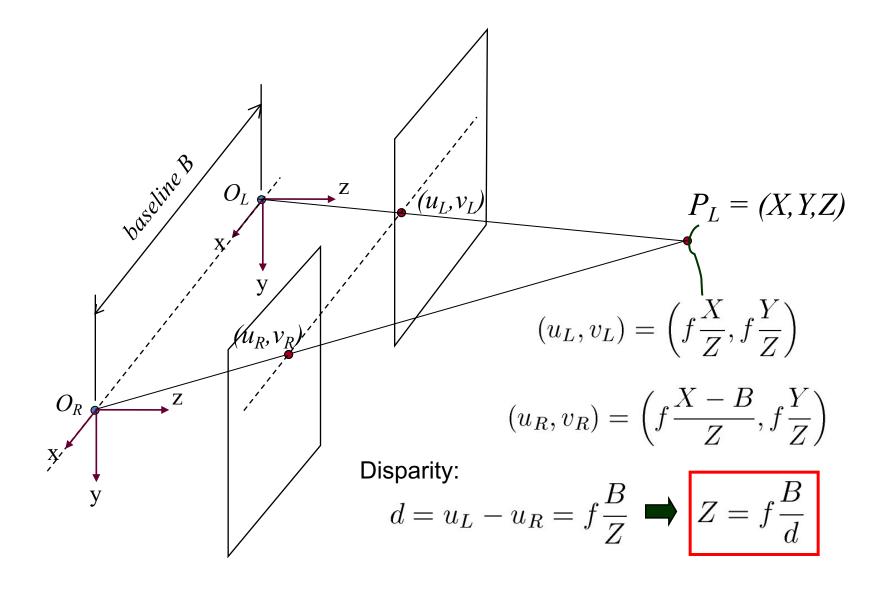
Review: Pinhole Camera Model



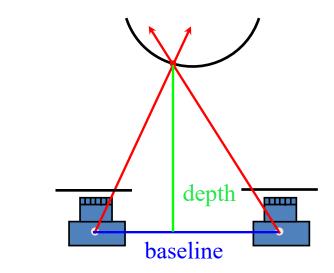
Basic Stereo Derivations



Basic Stereo Derivations

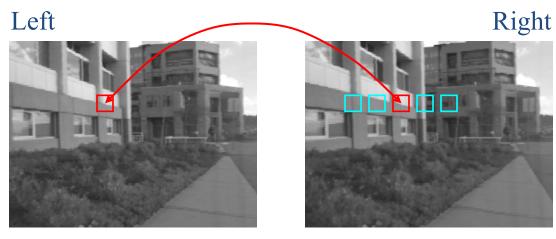


Stereo Vision



$$Z(x,y) = \frac{fB}{d(x,y)}$$

Z(x, y) is depth at pixel (x, y)d(x, y) is disparity



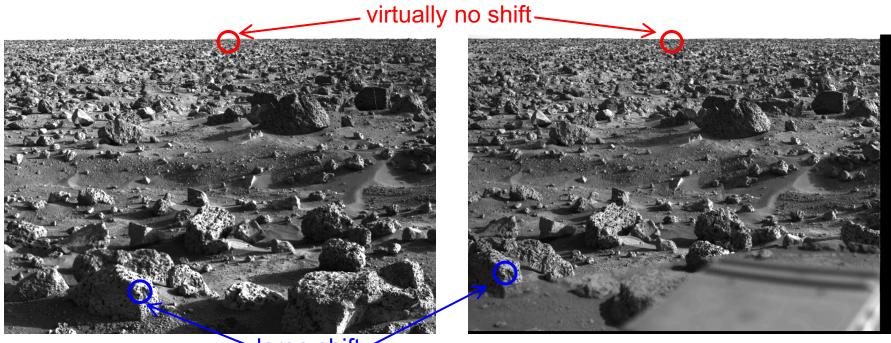
Matching correlation windows across scan lines

Components of Stereo

- Matching criterion (error function)
 - Quantify similarity of pixels
 - Most common: direct intensity difference
- Aggregation method
 - How error function is accumulated
 - Options: Pixel, edge, window, or segmented regions
- Optimization and winner selection
 - Examples: Winner-take-all, dynamic programming, graph cuts, belief propagation

Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities can be large

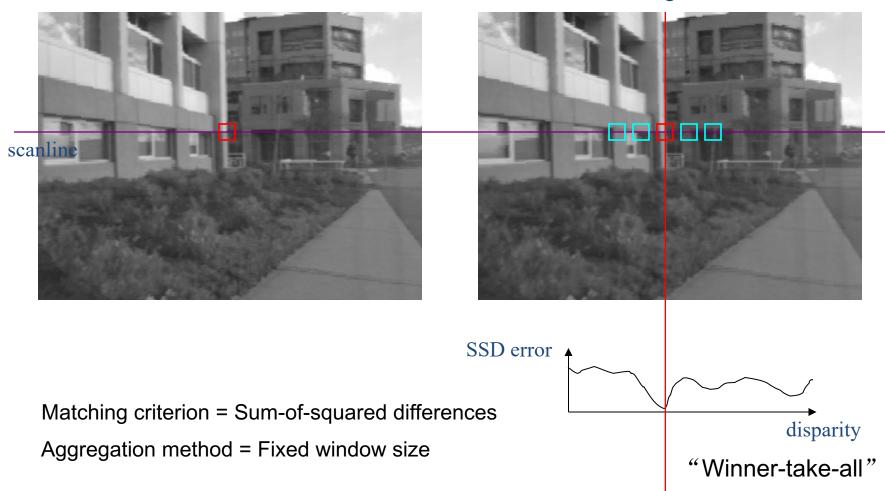


large shift

Correspondence Using Window-based Correlation

Left

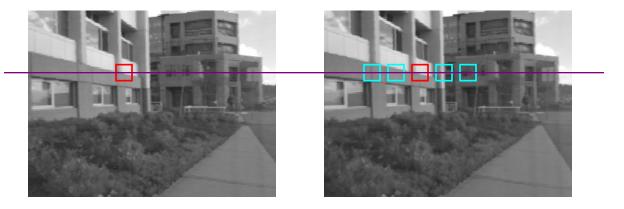
Right



Sum of Squared (Intensity) Differences

Left

Right



 w_L and w_R are corresponding *m* by *m* windows of pixels. We define the window function :

$$W_m(x,y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_{r}(x, y, d) = \sum_{(u,v) \in W_{m}(x,y)} [I_{L}(u,v) - I_{R}(u - d, v)]^{2}$$

Correspondence Using Correlation

Images courtesy of Point Grey Research

Disparity Map

Image Normalization

- Images may be captured under different exposures (gain and aperture)
- Cameras may have different radiometric characteristics
- Surfaces may not be Lambertian
- Hence, it is reasonable to normalize pixel intensity in each window (to remove bias and scale):

$$\bar{I} = \frac{1}{|W_m(x,y)|} \sum_{(u,v) \in W_m(x,y)} I(u,v)$$
$$\|I\|_{W_m(x,y)} = \sqrt{\sum_{(u,v) \in W_m(x,y)} [I(u,v)]^2}$$
$$\hat{I}(x,y) = \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{W_m(x,y)}}$$

Average pixel

Window magnitude

Normalized pixel

Images as Vectors

Left

Right

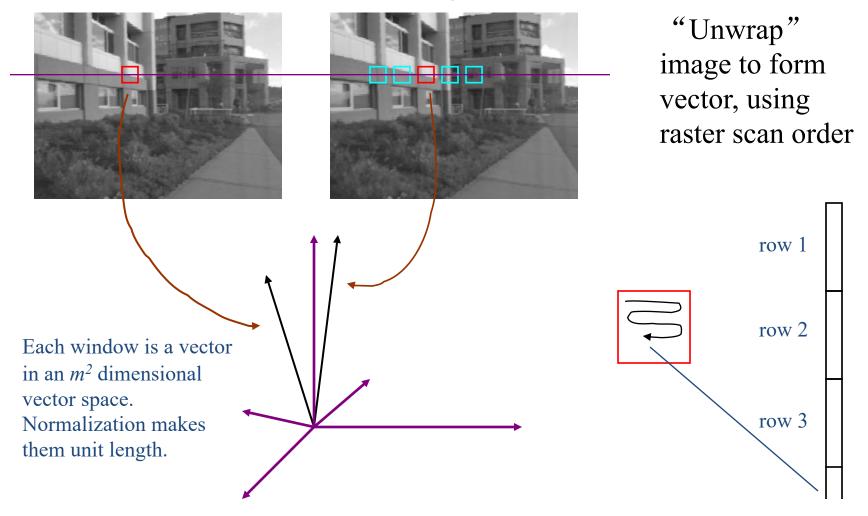


Image Metrics

 w_L Θ Θ

(Normalized) Sum of Squared Differences

$$C_{\text{SSD}}(d) = \sum_{(u,v) \in W_m(x,y)} [\hat{I}_L(u,v) - \hat{I}_R(u-d,v)]^2$$

$$= \left\| w_L - w_R(d) \right\|^2$$

Normalized Correlation

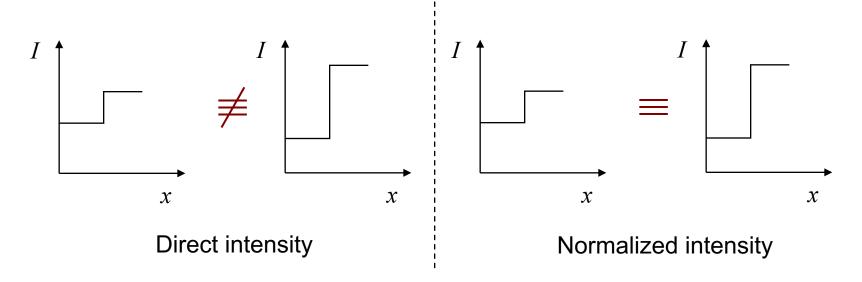
$$C_{\rm NC}(d) = \sum_{(u,v)\in W_m(x,y)} \hat{I}_R(u-d,v)$$

$$= w_L \cdot w_R(d) = \cos\theta$$

 $d^* = \operatorname{argmin}_d \|w_L - w_R(d)\|^2 = \operatorname{argmax}_d w_L \cdot w_R(d)$

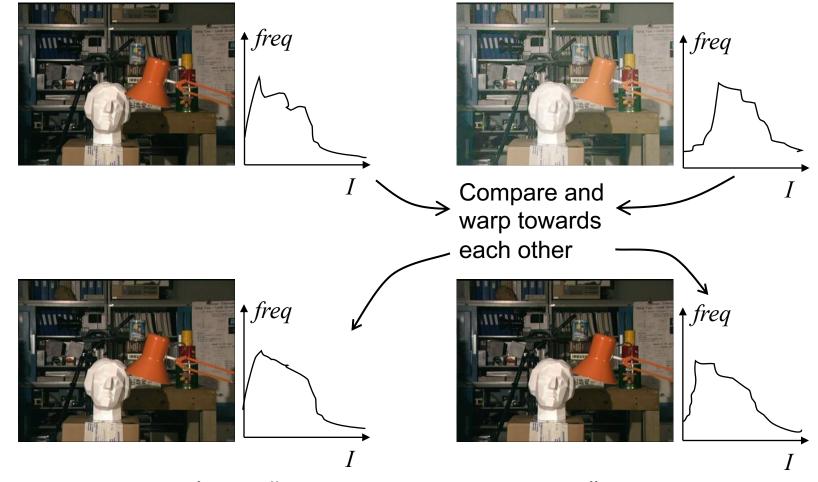
Caveat

- Image normalization should be used only when deemed necessary
- The equivalence classes of things that look "similar" are substantially larger, leading to more matching ambiguities



Alternative: Histogram Warping

(Assumes significant visual overlap between images)

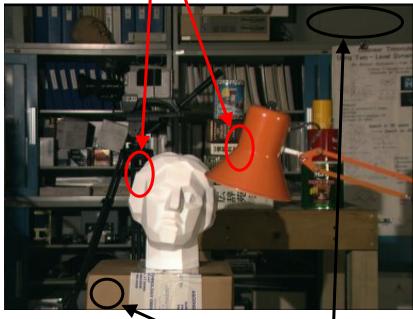


Cox, Roy, & Hingorani' 95: "Dynamic Histogram Warping"

Two major roadblocks

- Textureless regions create ambiguities
- Occlusions result in missing data

Occluded regions

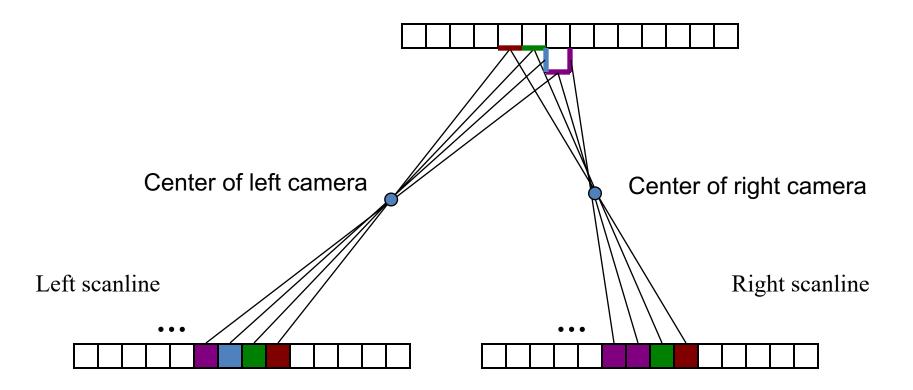


Textureless regions

Dealing with ambiguities and occlusion

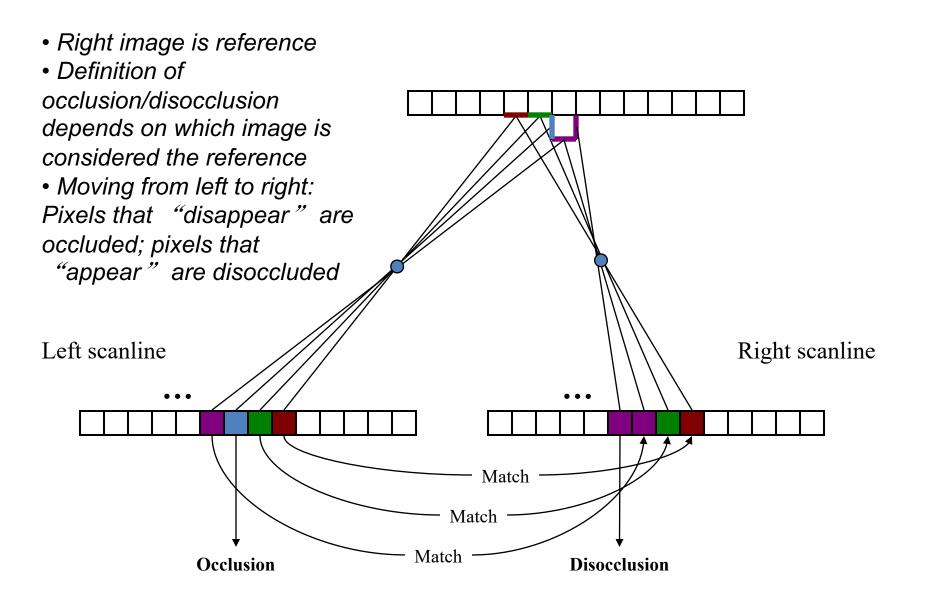
- Ordering constraint:
 - Impose same matching order along scanlines
- Uniqueness constraint:
 - Each pixel in one image maps to unique pixel in other
- Can encode these constraints easily in dynamic programming

Pixel-based Stereo

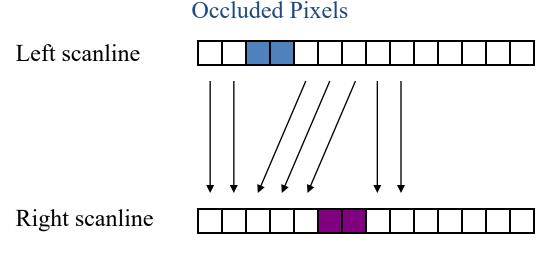


(NOTE: I' m using the actual, not virtual, image here.)

Stereo Correspondences



Search Over Correspondences

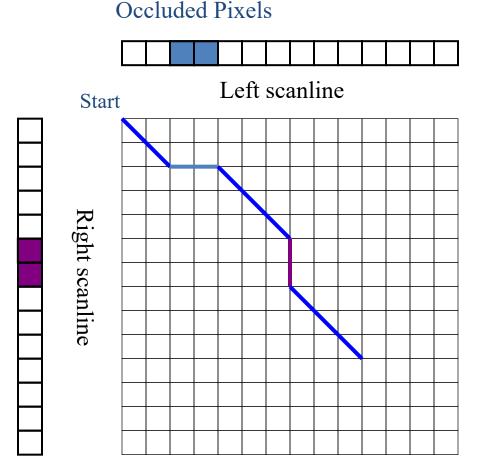


Disoccluded Pixels

Three cases:

- -Sequential cost of match
- -Occluded cost of no match
- -Disoccluded cost of no match

Stereo Matching with Dynamic Programming

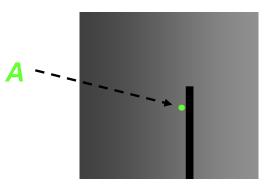


Dis-occluded Pixels

Dynamic programming yields the optimal path through grid. This is the best set of matches that satisfy the ordering constraint

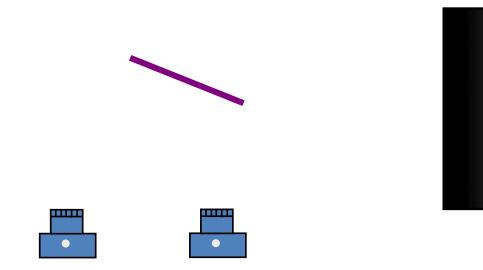
Ordering Constraint is not Generally Correct

 Preserves matching order along scanlines, but cannot handle "double nail illusion"



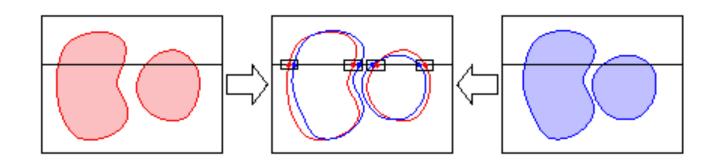
Uniqueness Constraint is not Generally Correct

 Slanted plane: Matching between M pixels and N pixels



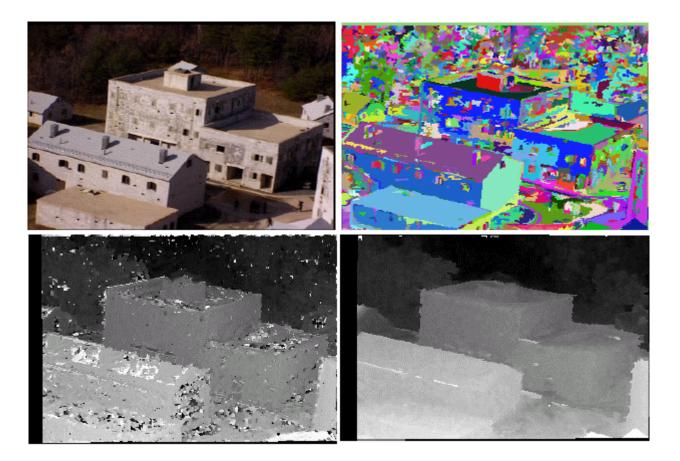
Edge-based Stereo

• Another approach is to match *edges* rather than windows of pixels:



- Which method is better?
 - Edges tend to fail in dense texture (outdoors)
 - Correlation tends to fail in smooth featureless areas
 - Sparse correspondences

Segmentation-based Stereo



Hai Tao and Harpreet W. Sawhney

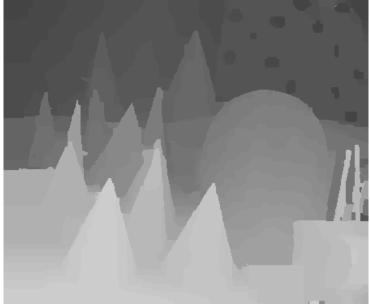
Another Example



Hallmarks of A Good Stereo Technique

- Should not rely on order and uniqueness constraints
- Should account for occlusions
- Should account for depth discontinuity
- Should have reasonable shape priors to handle textureless regions (e.g., planar or smooth surfaces)
- Should account for non-Lambertian surfaces
- There is a database with ground truth for testing: http://cat.middlebury.edu/stereo/data.html

Left

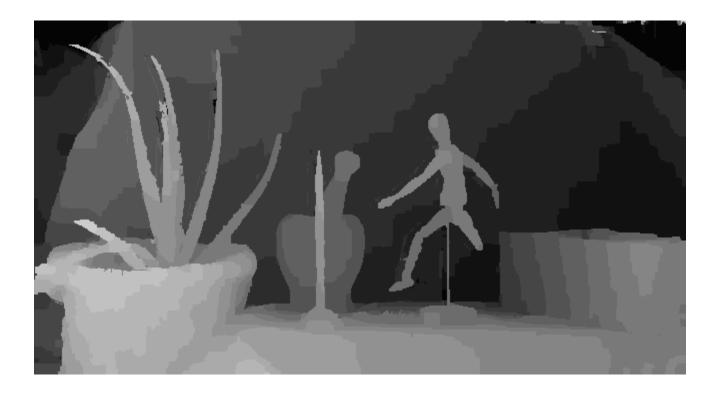


Result of using a more sophisticated stereo algorithm

Disparity Map

View Interpolation

Result using a good technique



Rigfstplanategee

View Interpolation

Bottom Line: Stereo is Still Difficult

- Depth discontinuities
- Lack of texture (depth ambiguity)
- Non-rigid effects (highlights, reflection, translucency)

From 2 views to >2 views

- More pixels voting for the right depth
- Statistically more robust
- However, occlusion reasoning is more complicated, since we have to account for *partial occlusion*:
 - Which subset of cameras sees the same 3D point?

