

Feature-based Image Alignment

- Geometric image registration
- 2D or 3D transforms between them
- Special cases: pose estimation, calibration

2D Alignment

- 3 photos
- Translational model

2D Alignment

- Input:
- A set of matches $\left\{\left(x_{i}, x_{i}^{\prime}\right)\right\}$
- A parametric model $f(x ; p)$
- Output:
- Best model p^{*}
- How?

2D translation estimation

- Input:
- Set of matches $\left\{\left(x_{1}, x_{1}{ }^{\prime}\right),\left(x_{2}, x_{2}{ }^{\prime}\right),\left(x_{3}, x_{3}{ }^{\prime}\right),\left(x_{4}, x_{4}{ }^{\prime}\right)\right\}$
- Parametric model: $f(x ; t)=x+t$
- Parameters $p==t$, location of origin of A in B
- Output:
- Best model p^{*}

2D translation estimation

- Input:
- Set of matches $\left\{\left(x_{1}, x_{1}{ }^{\prime}\right),\left(x_{2}, x_{2}{ }^{\prime}\right),\left(x_{3}, x_{3}{ }^{\prime}\right),\left(x_{4}, x_{4}{ }^{\prime}\right)\right\}$
- Parametric model: $f(x ; t)=x+t$
- Parameters $p==t$, location of origin of A in B
- Question for class:
- What is your best guess for model p* ??

2D translation estimation

- How?
- One correspondence $\mathrm{x} 1=[600,150], \mathrm{x} 1^{\prime}=[50,50]$
- Parametric model: $x^{\prime}=f(x ; t)=x+t$

2D translation estimation

[-550, -100]

- How?
- One correspondence $x 1=[600,150], x 1^{\prime}=[50,50]$
- Parametric model: $x^{\prime}=f(x ; t)=x+t$
=> $t=x^{\prime}-x$
$=>t=[50-600,40-150]=[-550,-100]$

2D translation via least-squares

- A set of matches $\left\{\left(x_{i}, x_{i}^{\prime}\right)\right\}$
- Parametric model: $\mathrm{f}(\mathrm{x} ; \mathrm{t})=\mathrm{x}+\mathrm{t}$
- Minimize sum of squared residuals:

$$
E_{\mathrm{LS}}=\sum_{i}\left\|\boldsymbol{r}_{i}\right\|^{2}=\sum_{i}\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i} ; \boldsymbol{p}\right)-\boldsymbol{x}_{i}^{\prime}\right\|^{2}
$$

How to solve?

In many cases, parametric model is linear:

$$
\begin{gathered}
f(x ; p)=x+J(x) p \\
\Delta x=x^{\prime}-x=J(x) p \\
E_{L S}=\sum_{i}\left\|J(x) p+x-x_{i}^{\prime}\right\|^{2}=\sum_{i}\left\|J\left(x_{i}\right) p-\Delta x_{i}\right\|^{2}
\end{gathered}
$$

Differentiate and set to 0 :

$$
2 \sum_{i} J^{T}\left(x_{i}\right)\left(J\left(x_{i}\right) p-\Delta x_{i}\right)=0
$$

Normal equations - $\left[\sum_{i} J^{T}\left(x_{i}\right) J\left(x_{i}\right)\right] p=\sum_{i} J^{T}\left(x_{i}\right) \Delta x_{i}$

Linear models menagerie

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Euclidean	$\left[\begin{array}{ccc}c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, \theta\right)$	$\left[\begin{array}{ccc}1 & 0 & -s_{\theta} x-c_{\theta} y \\ 0 & 1 & c_{\theta} x-s_{\theta} y\end{array}\right]$
similarity	$\left[\begin{array}{ccc}1+a & -b & t_{x} \\ b & 1+a & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a, b\right)$	$\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
affine	$\left[\begin{array}{ccc}1+a_{00} & a_{01} & t_{x} \\ a_{10} & 1+a_{11} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y\end{array}\right]$

- All the simple 2D models are linear!
- Exception: perspective transform

2D translation via least-squares

For translation: $J=I$ and normal equations are particularly simple:

$$
\begin{gathered}
{\left[\sum_{i} I^{T} I\right] p=\sum_{i} \Delta x_{i}} \\
p *=\frac{1}{n} \sum_{i} \Delta x_{i}
\end{gathered}
$$

In other words: just average the "flow vectors" $\Delta x=x^{\prime}-x$

Oops I lied !!! Euclidean is not linear!

Transform	Matrix	Parameters \boldsymbol{p}	Jacobian J
translation	$\left[\begin{array}{llll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Euclidean	$\sum\left[\begin{array}{ccc} c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y} \end{array}\right]$	$\left(t_{x}, t_{y}, \theta\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & \sum s_{\theta} x-c_{\theta} y \\ c_{\theta} x-s_{\theta} y\end{array}\right]$
similarity	$\left[\begin{array}{ccc} 1+a & -b & t_{x} \\ b & 1+a & t_{y} \end{array}\right]$	$\left(t_{x}, t_{y}, a, b\right)$	$\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
affine	$\left[\begin{array}{ccc}1+a_{00} & a_{01} & t_{x} \\ a_{10} & 1+a_{11} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y\end{array}\right]$

- All the simple 2D models are linear!
- Euclidean Jacobians are a function of θ !

Nonlinear Least Squares

$$
E_{N L S}=\sum_{i}\left\|f\left(x_{i} ; p\right)-x_{i}^{\prime}\right\|^{2}
$$

Linearize around a current guess p :

$$
\begin{gathered}
f(x ; p+\Delta p)=f(x ; p)+J(x ; p) \Delta p \\
r=x^{\prime}-f(x ; p)=J(x ; p) \Delta p \\
E_{N L S}=\sum_{i}\left\|f(x ; p)+J(x ; p) \Delta p-x_{i}^{\prime}\right\|^{2}=\sum_{i}\left\|J(x ; p) \Delta p-r_{i}\right\|^{2}
\end{gathered}
$$

Differentiate and set to 0 :

$$
\begin{gathered}
2 \sum_{i} J^{T}\left(x_{i} ; p\right)\left(J\left(x_{i} ; p\right) \Delta p-r_{i}\right)=0 \\
{\left[\sum_{i} J^{T}\left(x_{i} ; p\right) J\left(x_{i} ; p\right)\right] \Delta p=\sum_{i} J^{T}\left(x_{i} ; p\right) r_{i}} \\
A \Delta p=b \\
\Delta p *=A^{-1} b
\end{gathered}
$$

Projective/H

- Jacobians a bit harder
- Parameterization:

Image credit Graphics Mill
$\left[\begin{array}{ccc}1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1\end{array}\right]$
(educational Use)

- $x^{\prime}=f(x, p)$:
$x^{\prime}=\frac{\left(1+h_{00}\right) x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+1}$ and $y^{\prime}=\frac{h_{10} x+\left(1+h_{11}\right) y+h_{12}}{h_{20} x+h_{21} y+1}$.
- And Jacobian:

$$
\boldsymbol{J}=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{p}}=\frac{1}{D}\left[\begin{array}{llllllll}
x & y & 1 & 0 & 0 & 0 & -x^{\prime} x & -x^{\prime} y \\
0 & 0 & 0 & x & y & 1 & -y^{\prime} x & -y^{\prime} y
\end{array}\right]
$$

$$
D=h_{20} x+h_{21} y+1
$$

Closed Form H

- Taking $x^{\prime}=f(x, p)$:

Image credit Graphics Mill
$x^{\prime}=\frac{\left(1+h_{00}\right) x+h_{01} y+h_{02}}{h_{20} x+h_{21} y+1}$ and $y^{\prime}=\frac{h_{10} x+\left(1+h_{11}\right) y+h_{12}}{h_{20} x+h_{21} y+1}$.

- Divide both sides by $D=h_{20} x+h_{21} y+1$:

$$
\left[\begin{array}{c}
\hat{x}^{\prime}-x \\
\hat{y}^{\prime}-y
\end{array}\right]=\left[\begin{array}{cccccccc}
x & y & 1 & 0 & 0 & 0 & -\hat{x}^{\prime} x & -\hat{x}^{\prime} y \\
0 & 0 & 0 & x & y & 1 & -\hat{y}^{\prime} x & -\hat{y}^{\prime} y
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
\vdots \\
h_{21}
\end{array}\right]
$$

- 4 matches => system of 8 linear equations

RANSAC

Motivation

- Estimating motion models
- Typically: points in two images
- Candidates:
- Translation
- Homography
- Fundamental matrix

Mosaicking: Homography

www.cs.cmu.edu/~dellaert/mosaicking

Two-view geometry (next lecture)

Omnidirectional example

Images by Branislav Micusik, Tomas Pajdla, cmp.felk.cvut.cz/ demos/Fishepip/

Simpler Example

- Fitting a straight line

Discard Outliers

Main Idea

- Select 2 points at random
- Fit a line
- "Support" = number of inliers
- Line with most inliers wins

Why will this work ?

Best Line has most support

- More support -> better fit

RANSAC

- Objective:
- Robust fit of a model to data D
- Algorithm
- Randomly select s points
- Instantiate a model
- Get consensus set D_{i}
- If $\left|D_{i}\right|>T$, terminate and return model
- Repeat for N trials, return model with max $\left|D_{i}\right|$

In General

- Fit a more general model
- Sample = minimal subset
- Translation ?
- Homography ?
- Euclidean transorm ?

Example

 low support

How many samples?

- We want: at least one sample with all inliers
- Can't guarantee: probability P
- E.g. $P=0.99$

Calculate N

- If $\varepsilon=$ outlier probability
- proportion of inliers $p=1-\varepsilon$
- $P($ sample with all inliers $)=p^{s}$
- $P($ sample with an outlier $)=1-p^{s} \quad 0.64$
- $P(N$ samples an outlier $)=\left(1-p^{s}\right)^{N} \quad N=3->0.26$
- We want P(N samples an outlier) < 1-P (e.g. 0.01)
- $\left(1-p^{\mathrm{s}}\right)^{\mathrm{N}}<1-\mathrm{P}$
- $\mathrm{N}>\log (1-\mathrm{P}) / \log \left(1-\mathrm{p}^{s}\right)$
$0.64^{\mathrm{N}}<0.01$
N >10.3

Example

- $\mathrm{P}=0.99$
- $\mathrm{s}=2$

$$
\begin{array}{ll}
-\varepsilon=5 \% & \Rightarrow>N=2 \\
-\varepsilon=50 \% & \Rightarrow N=17
\end{array}
$$

- $\mathrm{s}=4$

$$
\begin{array}{ll}
-\varepsilon=5 \% & \Rightarrow>N=3 \\
-\varepsilon=50 \% & \Rightarrow>N=72
\end{array}
$$

- $\mathrm{s}=8$

$$
\begin{array}{ll}
-\varepsilon=5 \% & \Rightarrow \mathrm{~N}=5 \\
-\varepsilon=50 \% & \Rightarrow \mathrm{~N}=1177
\end{array}
$$

Remarks

- $N=f(\varepsilon)$, not the number of points
- N increases steeply with s

Distance Threshold

- Requires noise distribution
- Gaussian noise with σ
- Chi-squared distribution with DOF m
- 95\% cumulative:
- Line, $F: m=1, t^{2}=3.84 \sigma^{2}$
- Translation, homography: $m=2, t^{2}=5.99 \sigma^{2}$
- I.e. -> 95\% prob that $\mathrm{d}<\mathrm{t}$ is inlier

Threshold T

- Terminate if $\left|D_{i}\right|>T$
- Rule of thumb: $T \approx$ \#inliers
- So, $T=(1-\varepsilon) n=p n$

Adaptive N

- When ε is unknown ?
- Start with $\varepsilon=50 \%, \mathrm{~N}=\mathrm{inf}$
- Repeat:
- Sample s, fit model
- update ε as |outliers|/n
- set $\mathrm{N}=\mathrm{f}(\varepsilon, \mathrm{s}, \mathrm{p})$
- Terminate when N samples seen

Summary: RANSAC

- Objective:
- Robust fit of a model to data D
- Algorithm
- Randomly select s points
- Instantiate a model
- Get consensus set D_{i}
- If $\left|D_{i}\right|>T$, terminate and return model
- Repeat for N trials, return model with max $\left|D_{i}\right|$

Pose Estimation in VR

https://youtu.be/nrj3JE-NHMw

Review: 2D Alignment

- Input:
- A set of matches $\left\{\left(x_{i}, x_{i}^{\prime}\right)\right\}$
- A parametric model $f(x ; p)$
- Output:
- Best model p^{*}
- How?

Now: 3D-2D Alignment

- Input:
- A set of 3D->2D matches $\left\{\left(X_{i}, x_{i}\right)\right\}$
- A parametric model $f(X ; p)$
- Output:
- Best model p^{*}
- How?

Pose

Estimation

- Input:

- A set of 2D measurements x_{i} of known 3D points X_{i}
- Parametric model is camera matrix P, i.e., $x=f(X ; P)$
- Output:
- Best camera matrix P
- How?

Review: Projective Camera Matrix

- Chapter 2 in book
- Homogeneous coord.
- 3D TO 2D projection:

$$
\mathrm{x}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}] \mathrm{X}=\mathrm{PX}
$$

where $P=3 \times 4$ camera matrix and K the 3×3 calibration $K=\left[\begin{array}{ccc}f_{x} & s & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Intuitive: camera is at a position ${ }_{w} \mathrm{t}_{\mathrm{c}}$ Indices say: camera in world coordinate frame

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Rotation is given by 3×3 matrix ${ }_{w} R_{c}$ whose columns are the camera axes ${ }_{w} x_{c},{ }_{w} y_{c, w} z_{c}$

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Transforming point X_{i} from world to camera coordinates: ${ }_{w} X_{i}-{ }_{w} t_{c}={ }_{w} R_{c} X_{i}$

Camera Extrinsics: a Pose in 3D

- Expressed in homogeneous coordinates:
- ${ }_{c} X_{i}={ }_{w} R_{c}{ }^{\top}\left({ }_{w} X_{i}-{ }_{w} t_{c}\right)={ }_{w} R_{c}{ }^{\top}\left[I \mid-{ }_{w} t_{c}\right]{ }_{w} X_{i}$

$$
=\left[{ }_{w} R_{c}{ }^{\top} \mid-{ }_{w} R_{c}^{\top}{ }_{w} t_{c}\right]_{w} X_{i}
$$

$$
=\left[\left.{ }_{c} R_{w}\right|_{c} t_{w}\right]_{w} X_{i}
$$

$$
=[R \mid t]_{w} X_{i}
$$

${ }_{c} X_{i}$

Camera Extrinsics: a Pose in 3D

- Conclusion: when people write ${ }_{c} X_{i}=[R \mid t]{ }_{w} X_{i}$ they are talking about (unintuitive) $\left[{ }_{c} R_{w} \mid{ }_{c} t_{w}\right]$
- We like use (intuitive) ${ }_{c} X_{i}={ }_{w} R_{c}^{\top}\left[I \mid-{ }_{w} t_{c}\right]_{w} X_{i}$

Revision: Projective Camera Matrix

- Homogeneous coord.
- 3D TO 2D projection:

Camera-centric: $\mathrm{x}=\mathrm{K}\left[{ }_{\mathrm{c}} \mathrm{R}_{\mathrm{w}} \mid \mathrm{ct}_{\mathrm{w}}\right] \mathrm{X}=\mathrm{PX}$ World-centric: $\quad x=K{ }_{w} R_{c}{ }^{T}\left[I \mid-{ }_{w} t_{c}\right] X=P X$
$P=$ same 3×4 camera matrix

$$
\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Looking at the (opaque) camera matrix

Can you interpret the columns of P with entities in the scene?
$P=\left[\begin{array}{llll}P^{1} & P^{2} & P^{3} & P^{4}\end{array}\right]$

Answer:

$p^{1}==$ the image of $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$
$P^{2}==$ the image of $\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
$\mathrm{D}^{3}==$ the image of $\left[\begin{array}{lll}0 & 0 & 1\end{array} 0\right]$
$P^{4}=-$ the image of [0001]
What are those? [0 0001] is easy...

Answer:
[0 0001 1] is the origin, so P 4 is the image of the origin.
[10llll 10000 is a point at infinity in the X direction, so it is the vanishing point of atl lines parallel with the X direction!

Vanishing points, revisited

Columns of P !

$$
P=\left[\begin{array}{llll}
P^{1} & P^{2} & P^{3} & P^{4}
\end{array}\right]
$$

P^{4} is arbitrary: wherever you defined the world origin.
https://www.artinstructionblog.com/perspective-drawing-tutorial-for-artists-part-2

Back to Pose Estimation!

- Simple algorithm: just measure the coordinates of the origin and the three vanishing points?
- Does not work $)_{\text {: }}$
- Columns are only measured up to a scale.
- 4 points * 2DOF = only 8 DOF! Missing 11-8=3
-3 missing numbers are exactly those scales.

Least Squares Pose Estimation...

- Input:
- A set of 2D measurements x_{i} of known 3D points X_{i}
- Parametric model is camera matrix P, i.e., $x=f(X ; P)$
- Output:
- Best camera matrix P

Pose estimation = "Resectioning"

$$
\mathbf{x}=f\left(\mathbf{X}_{w} ; \mathbf{P}\right)=\mathbf{P} \mathbf{X}_{w}=\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \cong\left[\begin{array}{c}
s \cdot u \\
s \cdot v \\
s
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
\underset{\hat{\mathbf{P}}}{\arg \min } \sum_{i=1}^{N}\left\|\hat{\mathbf{P}} \mathbf{X}_{w}^{i}-\mathbf{x}^{i}\right\|_{2} .
$$

- Opposite of triangulation.

Pose estimation

$$
\underset{\hat{\mathbf{P}}}{\arg \min } \sum_{i=1}^{N}\left\|\hat{\mathbf{P}} \mathbf{X}_{w}^{i}-\mathbf{x}^{i}\right\|_{2}
$$

- In project 4, you will use scipy.optimize.least_squares to do exactly that. Working knowledge of 3D poses will be required.
- Note before we compute the 2D reprojection error we need to convert back PX to non-homogeneous coordinates:

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

https://docs.scipy.org/doc/scipy/reference/generated/ scipy.optimize.least squares.html

