

Feature-based Image Alignment

- Geometric image registration
 - 2D or 3D transforms between them
 - Special cases: pose estimation, calibration

2D Alignment

- 3 photos
- Translational model

2D Alignment

- Input:
 - A set of matches $\{(x_i, x_i')\}$
 - A parametric model f(x; p)
- Output:
 - Best model p*
- How?

Input:

- Set of matches $\{(x_1, x_1'), (x_2, x_2'), (x_3, x_3'), (x_4, x_4')\}$
- Parametric model: f(x; t) = x + t
- Parameters p == t, location of origin of A in B

• Output:

Best model p*

Input:

- Set of matches $\{(x_1, x_1'), (x_2, x_2'), (x_3, x_3'), (x_4, x_4')\}$
- Parametric model: f(x; t) = x + t
- Parameters p == t, location of origin of A in B
- Question for class:
 - What is your best guess for model p* ??

- How?
 - One correspondence x1 = [600, 150], <math>x1' = [50, 50]
 - Parametric model: x' = f(x; t) = x + t

[-550, -100]

- One correspondence x1 = [600, 150], <math>x1' = [50, 50]
- Parametric model: x' = f(x; t) = x + t=> t = x' - x

2D translation via least-squares

- A set of matches $\{(x_i, x_i')\}$
- Parametric model: f(x; t) = x + t
- Minimize sum of squared residuals:

$$E_{\text{LS}} = \sum_{i} \| \boldsymbol{r}_{i} \|^{2} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{p}) - \boldsymbol{x}'_{i} \|^{2}$$

How to solve?

In many cases, parametric model is linear:

Jacobian

$$f(x; p) = x + J(x)p$$

$$\Delta x = x' - x = J(x)p$$

$$E_{LS} = \sum_{i} ||J(x)p + x - x'_{i}||^{2} = \sum_{i} ||J(x_{i})p - \Delta x_{i}||^{2}$$

Differentiate and set to 0:

$$2\sum_{i} J^{T}(x_i) \left(J(x_i)p - \Delta x_i \right) = 0$$

Normal equations —
$$\left[\sum_i J^T(x_i)J(x_i)\right]p = \sum_i J^T(x_i)\Delta x_i$$

$$Ap = b$$

$$p* = A^{-1}b$$

Linear models menagerie

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{ccc} 1 & 0 & t_x \\ 0 & 1 & t_y \end{array}\right]$	(t_x,t_y)	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$
Euclidean	$\left[egin{array}{ccc} c_{ heta} & -s_{ heta} & t_x \ s_{ heta} & c_{ heta} & t_y \end{array} ight]$	$(t_x,t_y, heta)$	$\left[\begin{array}{ccc} 1 & 0 & -s_{\theta}x - c_{\theta}y \\ 0 & 1 & c_{\theta}x - s_{\theta}y \end{array}\right]$
similarity	$\left[\begin{array}{ccc} 1+a & -b & t_x \\ b & 1+a & t_y \end{array}\right]$	(t_x, t_y, a, b)	$\left[\begin{array}{cccc} 1 & 0 & x & -y \\ 0 & 1 & y & x \end{array}\right]$
affine	$ \left[\begin{array}{ccc} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{array} \right] $	$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$	$\left[\begin{array}{cccccc} 1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y \end{array}\right]$

- All the simple 2D models are linear!
- Exception: perspective transform

2D translation via least-squares

For translation: J = I and normal equations are particularly simple:

$$\left[\sum_{i} I^{T} I\right] p = \sum_{i} \Delta x_{i}$$

$$p* = \frac{1}{n} \sum_{i} \Delta x_{i}$$

In other words: just average the "flow vectors" $\Delta x = x' - x$

Oops I lied !!! Euclidean is not linear!

Transform	Matrix	Parameters p	Jacobian J
translation	$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$	(t_x,t_y)	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$
Euclidean	$\begin{bmatrix} c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y} \end{bmatrix}$	$(t_x,t_y, heta)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
similarity	$\begin{bmatrix} 1+a & -b & t_x \\ b & 1+a & t_y \end{bmatrix}$	(t_x, t_y, a, b)	$\left[\begin{array}{ccc} 1 & 0 & x & -y \\ 0 & 1 & y & x \end{array}\right]$
affine	$ \begin{bmatrix} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{bmatrix} $	$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$	$\left[\begin{array}{cccccc} 1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y \end{array}\right]$

- All the simple 2D models are linear!
- Euclidean Jacobians are a function of θ !

Nonlinear Least Squares

$$E_{NLS} = \sum_{i} \|f(x_i; p) - x_i'\|^2$$

Linearize around a current guess p:

$$f(x; p + \Delta p) = f(x; p) + J(x; p) \Delta p$$

$$r = x' - f(x; p) = J(x; p) \Delta p$$

$$E_{NLS} = \sum_{i} \|f(x; p) + J(x; p) \Delta p - x'_{i}\|^{2} = \sum_{i} \|J(x; p) \Delta p - r_{i}\|^{2}$$

Differentiate and set to 0:

$$2\sum_{i} J^{T}(x_{i}; p) (J(x_{i}; p)\Delta p - r_{i}) = 0$$

$$\left[\sum_{i} J^{T}(x_{i}; p)J(x_{i}; p)\right] \Delta p = \sum_{i} J^{T}(x_{i}; p)r_{i}$$

$$A\Delta p = b$$

 $\Delta p * = A^{-1}b$

Projective/H

- Jacobians a bit harder
- Parameterization:

$$\begin{bmatrix} 1 + h_{00} & h_{01} & h_{02} \\ h_{10} & 1 + h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{bmatrix}$$

Image credit Graphics Mill (educational Use)

$$(h_{00}, h_{01}, \ldots, h_{21})$$

• x' = f(x,p):

$$x' = \frac{(1+h_{00})x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1} \text{ and } y' = \frac{h_{10}x + (1+h_{11})y + h_{12}}{h_{20}x + h_{21}y + 1}.$$

And Jacobian:

$$\mathbf{J} = \frac{\partial \mathbf{f}}{\partial \mathbf{p}} = \frac{1}{D} \begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -x'x & -x'y \\ 0 & 0 & 0 & x & y & 1 & -y'x & -y'y \end{bmatrix}$$

$$D = h_{20}x + h_{21}y + 1$$

Closed Form H

Projective transformation

• Taking x'=f(x,p):

Image credit Graphics Mill

$$x' = \frac{(1+h_{00})x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1} \text{ and } y' = \frac{h_{10}x + (1+h_{11})y + h_{12}}{h_{20}x + h_{21}y + 1}.$$

• Divide both sides by $D = h_{20}x + h_{21}y + 1$:

$$\begin{bmatrix} \hat{x}' - x \\ \hat{y}' - y \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -\hat{x}'x & -\hat{x}'y \\ 0 & 0 & 0 & x & y & 1 & -\hat{y}'x & -\hat{y}'y \end{bmatrix} \begin{bmatrix} h_{00} \\ \vdots \\ h_{21} \end{bmatrix}$$

4 matches => system of 8 linear equations

RANSAC

Motivation

- Estimating motion models
- Typically: points in two images
- Candidates:
 - Translation
 - Homography
 - Fundamental matrix

Mosaicking: Homography

www.cs.cmu.edu/~dellaert/mosaicking Frank Dellaert Fall 2020

Two-view geometry (next lecture)

Omnidirectional example

Images by Branislav Micusik, Tomas Pajdla, cmp.felk.cvut.cz/ demos/Fishepip/
Frank Dellaert Fall 2020

Simpler Example

Fitting a straight line

Discard Outliers

- No point with d>t
- RANSAC:
 - RANdom SAmple Consensus
 - Fischler & Bolles 1981
 - Copes with a large proportion of outliers

Main Idea

- Select 2 points at random
- Fit a line
- "Support" = number of inliers
- Line with most inliers wins

Why will this work?

Best Line has most support

More support -> better fit

RANSAC

Objective:

- Robust fit of a model to data D
- Algorithm
 - Randomly select s points
 - Instantiate a model
 - Get consensus set D_i
 - If $|D_i| > T$, terminate and return model
 - Repeat for N trials, return model with max |D_i|

In General

- Fit a more general model
- Sample = minimal subset
 - Translation?
 - Homography ?
 - Euclidean transorm ?

Example

 Euclidean: needs 2 correspondences (2*2>=3)

- Here correct hypothesis has support of 4 (out of 5)
- Including red into minimal sample (of 2) would **likely** yield low support

How many samples?

- We want: at least one sample with all inliers
- Can't guarantee: probability P
- E.g. P = 0.99

Calculate N

• If
$$\varepsilon$$
 = outlier probability

• proportion of inliers p = 1-
$$\varepsilon$$

• P(N samples an outlier) =
$$(1-p^s)^N$$
 N=3 -> 0.26

•
$$(1-p^s)^N < 1-P$$

•
$$N > log(1-P)/log(1-p^s)$$

$$0.64^{\rm N} < 0.01$$

 $s=2 -> p^s=0.36$

 $\varepsilon = 0.4$

Example

$$- \varepsilon = 5\%$$

$$- \varepsilon = 50\%$$

$$- \varepsilon = 5\%$$

$$- \varepsilon = 50\%$$

$$- \varepsilon = 5\%$$

$$-\varepsilon = 50\%$$

Remarks

- N = $f(\varepsilon)$, **not** the number of points
- N increases steeply with s

Distance Threshold

- Requires noise distribution
- Gaussian noise with σ
- Chi-squared distribution with DOF m
 - 95% cumulative:
 - Line, F: m=1, t^2 =3.84 σ^2
 - Translation, homography: m=2, t^2 =5.99 σ^2
- I.e. -> 95% prob that d<t is inlier

Threshold T

- Terminate if |D_i|>T
- Rule of thumb: T ≈ #inliers
- So, $T = (1 \varepsilon)n = pn$

Adaptive N

- When ε is unknown?
- Start with ε = 50%, N=inf
- Repeat:
 - Sample s, fit model
 - update ε as |outliers|/n
 - set N=f(ε , s, p)
- Terminate when N samples seen

Summary: RANSAC

Objective:

Robust fit of a model to data D

Algorithm

- Randomly select s points
- Instantiate a model
- Get consensus set D_i
- If $|D_i| > T$, terminate and return model
- Repeat for N trials, return model with max |D_i|

Pose Estimation in VR

https://youtu.be/nrj3JE-NHMw

Review: 2D Alignment

- Input:
 - A set of matches $\{(x_i, x_i')\}$
 - A parametric model f(x; p)
- Output:
 - Best model p*
- How?

Now: 3D-2D Alignment

• Input:

- A set of 3D->2D matches $\{(X_i, x_i)\}$
- A parametric model f(X; p)
- Output:
 - Best model p*
- How?

Pose Estimation

• Input:

- A set of 2D measurements x_i of known 3D points X_i
- Parametric model is camera matrix P, i.e., x = f(X; P)
- Output:
 - Best camera matrix P
- How?

Review: Projective Camera Matrix

- Chapter 2 in book
- Homogeneous coord.
- 3D TO 2D projection:

$$x = K[R|t]X = PX$$

where
$$P = 3x4$$
 camera matrix and K the 3x3 calibration $K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$

- What is the geometric meaning of R and t??
- Intuitive: camera is at a position wtc
 Indices say: camera in world coordinate frame

- What is the geometric meaning of R and t??
- Rotation is given by 3x3 matrix wRc whose columns are the camera axes xc, yc, yc, wZc

- What is the geometric meaning of R and t??
- Transforming point X_i from world to camera coordinates: ${}_{w}X_i {}_{w}t_c = {}_{w}R_{c,c}X_i$

Expressed in homogeneous coordinates:

- Conclusion: when people write $_{c}X_{i} = [R|t]_{w}X_{i}$ they are talking about (unintuitive) $[_{c}R_{w}|_{c}t_{w}]$
- We like use (intuitive) $_{c}X_{i} = _{w}R_{c}^{T}[I] _{w}t_{c}]_{w}X_{i}$

Revision: Projective Camera Matrix

- Homogeneous coord.
- 3D TO 2D projection:

Camera-centric:
$$x = K[_cR_w \mid _ct_w] X = PX$$

World-centric:
$$x = K_w R_c^T [I | - w t_c] X = PX$$

$$P =$$
same 3x4 camera matrix and K the 3x3 calibration $K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$

Looking at the (opaque) camera matrix

Can you interpret the columns of P with entities in the scene?

$$P = \begin{bmatrix} P^1 & P^2 & P^3 & P^4 \end{bmatrix}$$

Answer:

 $R^1 ==$ the image of [1 0 0 0]

 $P^2 ==$ the image of [0 1 0 0]

 $P^3 ==$ the image of $[0\ 0\ 1\ 0]$

 $P^4 =$ the image of [0 0 0 1]

What are those? [0 0 0 1] is easy...

Answer:

[0 0 0 1] is the origin, so P4 is the image of the origin.

[1 0 0 0] is a point at infinity in the X-direction, so it is the vanishing point of all lines parallel with the X direction!

Vanishing points, revisited

Columns of P!

$$P = \begin{bmatrix} P^1 & P^2 & P^3 & P^4 \end{bmatrix}$$

P⁴ is arbitrary: wherever you defined the world origin.

https://www.artinstructionblog.com/perspective-drawing-tutorial-for-artists-part-2

Back to Pose Estimation!

 Simple algorithm: just measure the coordinates of the origin and the three vanishing points?

- Does not work ⊗:
 - Columns are only measured up to a scale.
 - 4 points * 2DOF = only 8 DOF! Missing 11-8=3
 - 3 missing numbers are exactly those scales.

Least Squares Pose Estimation...

- Input:
 - A set of 2D measurements x_i of known 3D points X_i
 - Parametric model is camera matrix P, i.e., x = f(X; P)
- Output:
 - Best camera matrix P

Pose estimation = "Resectioning"

$$\mathbf{x} = f(\mathbf{X}_w; \mathbf{P}) = \mathbf{P}\mathbf{X}_w = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \cong \begin{bmatrix} s \cdot u \\ s \cdot v \\ s \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\arg\min_{\hat{\mathbf{P}}} \sum_{i=1}^{N} ||\hat{\mathbf{P}}\mathbf{X}_w^i - \mathbf{x}^i||_2.$$

Opposite of triangulation.

Pose estimation

$$\underset{\hat{\mathbf{P}}}{\operatorname{arg\,min}} \sum_{i=1}^{N} ||\hat{\mathbf{P}} \mathbf{X}_{w}^{i} - \mathbf{x}^{i}||_{2}.$$

- In project 4, you will use scipy.optimize.least_squares to do exactly that. Working knowledge of 3D poses will be required.
- Note before we compute the 2D reprojection error we need to convert back PX to non-homogeneous coordinates:

$$x_{i} = \frac{p_{00}X_{i} + p_{01}Y_{i} + p_{02}Z_{i} + p_{03}}{p_{20}X_{i} + p_{21}Y_{i} + p_{22}Z_{i} + p_{23}}$$

$$y_{i} = \frac{p_{10}X_{i} + p_{11}Y_{i} + p_{12}Z_{i} + p_{13}}{p_{20}X_{i} + p_{21}Y_{i} + p_{22}Z_{i} + p_{23}}$$

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html