




3.1.1 Pixel transforms
• Contrast
• Brightness
• Gamma
• Histogram equalization
• Arithmetic
• Compositing



Contrast

• g(x) = a f(x), a=1.1



Brightness

• g(x) = f(x) + b, b=16



Gamma correction

• gamma = 1.2



Histogram Equalization

• Non-linear transform to make histogram flat
• Still a per-pixel operation g(x) = h(f(x))



120 122 140 142 143

121 80 40 144 10

122 81 40 0 151

125 80 40 0 152

126 70 40 0 153

120 122 140 142 143

121 120 141 144 147

122 121 144 146 11

125 121 144 145 10

126 121 145 147 13

Point-Process: Pixel/Point Arithmetic

120 122 140 142 143

121 120 141 144 147

122 121 144 146 11

125 121 144 145 10

126 121 145 147 13

120 122 140 142 143

121 80 40 144 10

122 81 40 0 151

125 80 40 0 152

126 70 40 0 153

+

240 244 280 284 286

121 200 181 288 157

122 202 184 146 162

125 201 184 145 164

126 191 185 147 166

=

-
0 0 0 0 0

0 40 101 0 137

0 40 104 146 -140

0 40 104 145 -142

0 191 185 147 -140

=



Pixel/Point Arithmetic: An Example

-

=
Image 1 - Image 2

Binary(Image 1 - Image 2)

Image 1 Image 2





Image filtering

• Image filtering: compute function of local 
neighborhood at each position

• Really important!
– Enhance images

• Denoise, resize, increase contrast, etc.

– Extract information from images
• Texture, edges, distinctive points, etc.

– Detect patterns
• Template matching

– Deep Convolutional Networks



111

111

111

Slide credit: David Lowe (UBC)
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Example: box filter
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What does it do?
• Replaces each pixel with 

an average of its 
neighborhood

• Achieve smoothing effect 
(remove sharp features)
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Slide credit: David Lowe (UBC)

],[g ××

Box Filter



Smoothing with box filter



Practice with linear filters

000

010

000

Original
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Source: D. Lowe



Practice with linear filters
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Original Filtered 
(no change)

Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

Original
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000 - ?

(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
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Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters

-101

-202

-101

Vertical Edge
(absolute value)

Sobel



Other filters

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel



Filtering vs. Convolution
• 2d filtering

– h=filter2(f,I); or

h=imfilter(I,f);

• 2d convolution
– h=conv2(f,I);
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Key properties of linear filters

Linearity:
imfilter(I, f1 + f2) = 

imfilter(I,f1) + imfilter(I,f2)

Shift invariance: same behavior regardless of 
pixel location
imfilter(I,shift(f)) = shift(imfilter(I,f))

Any linear, shift-invariant operator can be 
represented as a convolution

Source: S. Lazebnik



More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal
– But particular filtering implementations might break this equality

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)
– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0],
a * e = a

Source: S. Lazebnik



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, s = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters
• Remove “high-frequency” components from the 

image (low-pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and 

get same result as larger-width kernel would have
– Convolving two times with Gaussian kernel of width σ

is same as convolving once with kernel of width  σ√2 

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:



Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Why do we get different, distance-dependent 
interpretations of hybrid images?

?

Slide: Hoiem
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Median filters

• A Median Filter operates over a window by 
selecting the median intensity in the window.

• What advantage does a median filter have over 
a mean filter?

• Is a median filter a kind of convolution?

Slide by Steve Seitz
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Comparison: salt and pepper noise

Slide by Steve Seitz



Bilateral filtering



Morphological Operators





Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter



Why does a lower resolution image still make 
sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem

http://www.flickr.com/photos/igorms/136916757/


Thinking in Frequency

Slides: Hoiem, Efros, and others



Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):

Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

• But it’s (mostly) true!
– called Fourier Series
– there are some subtle 

restrictions

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre



Example: Music
• We think of music in terms of frequencies at 

different magnitudes

Slide: Hoiem



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slides: Efros



Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Fourier Transform
• Fourier transform stores the magnitude and phase at each 

frequency
– Magnitude encodes how much signal there is at a particular frequency
– Phase encodes spatial information (indirectly)
– For mathematical convenience, this is often notated in terms of real 

and complex numbers

22 )()( ww IRA +±=
)(
)(tan 1

w
wf

R
I-=Amplitude: Phase:



Fourier Transform Pairs



Fourier Transforms of Filters



Man-made Scene



Can change spectrum, then reconstruct



Low and High Pass filtering



The Convolution Theorem
• The Fourier transform of the convolution of two 

functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =*

]]F[][F[F* 1 hghg -=



Filtering in spatial domain
-101

-202

-101

* =



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Slide: Hoiem



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Gaussian



Box Filter


