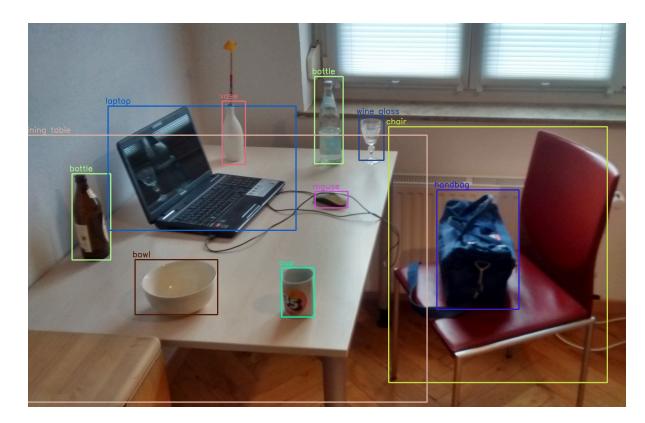
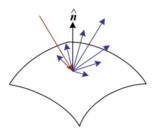


CS 4476: Computer Vision Introduction to Object Recognition



Guest Lecturer: Judy Hoffman

Slides by Lana Lazebnik except where indicated otherwise



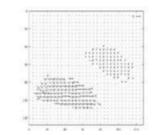
2. Image Formation

3. Image Processing

4. Features

5. Segmentation

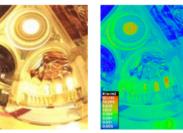
6-7. Structure from Motion



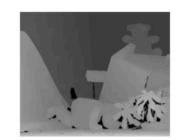
8. Motion

9. Stitching

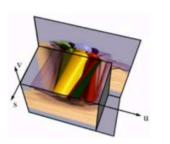
12. 3D Shape



10. Computational Photography



11. Stereo



13. Image-based Rendering

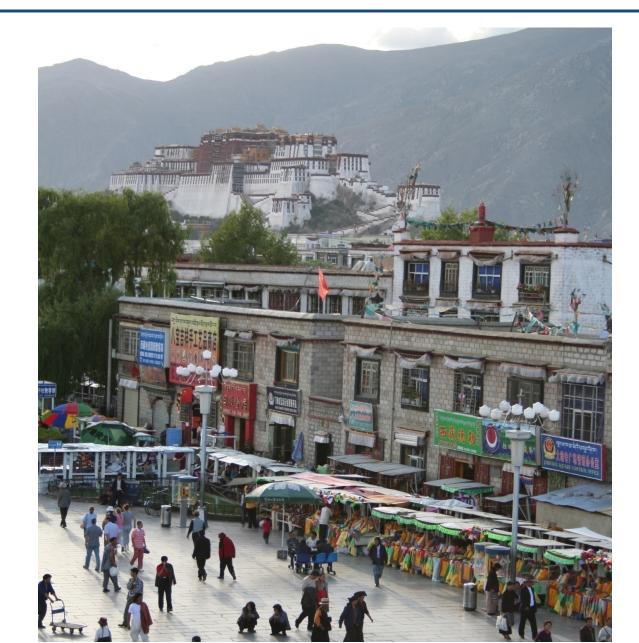
Introduction to recognition

Source: Charley <u>Harper</u>

Outline

- Overview: recognition tasks
- Statistical learning approach
- Classic / Shallow Pipeline
 - "Bag of features" representation
 - Classifiers: nearest neighbor, linear, SVM
- Deep Pipeline
 - Neural Networks

Common Recognition Tasks



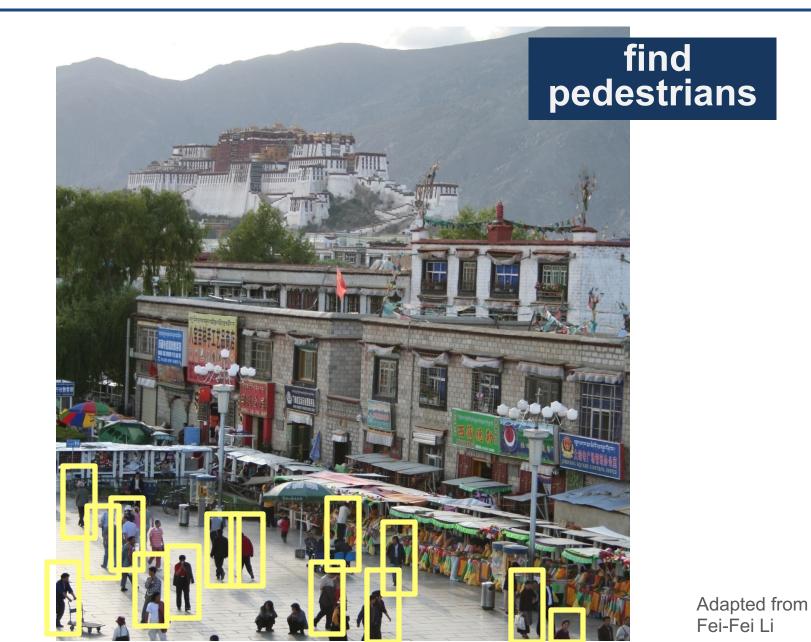
Adapted from Fei-Fei Li

Image Classification and Tagging

• outdoor mountains • city • Asia • Lhasa Adapted from Fei-Fei Li

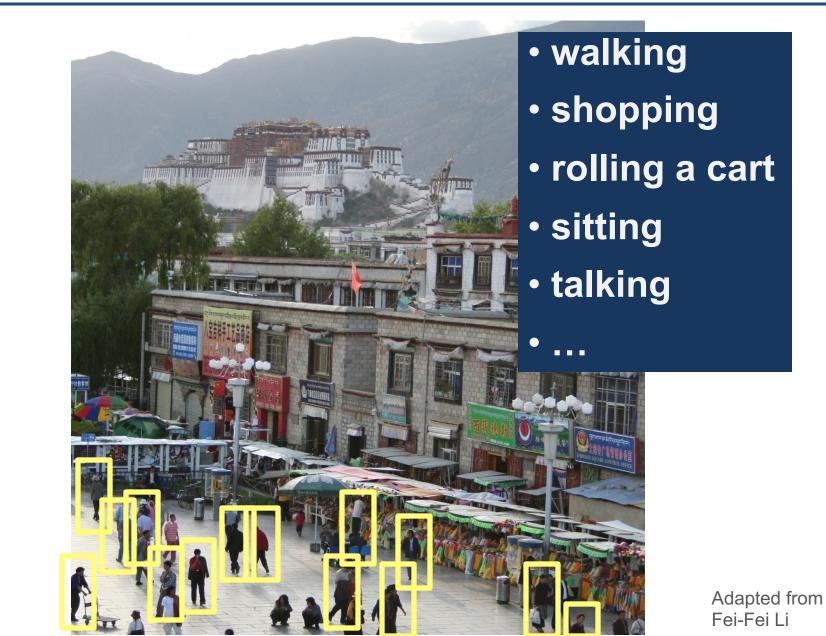
What is this an image of?

Object Detection



Localize!

Activity Recognition



What are they doing?

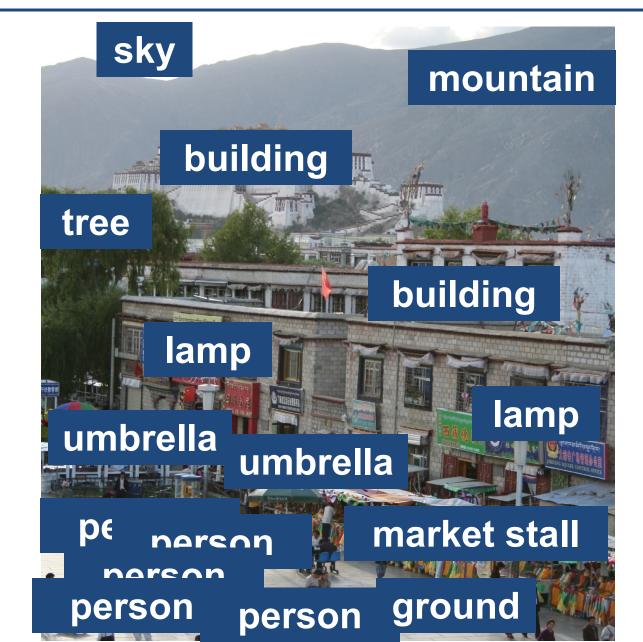
Semantic Segmentation

Label Every Pixel

Adapted from Fei-Fei Li

Semantic Segmentation

Label Every Pixel



Adapted from Fei-Fei Li

Detection, semantic and instance segmentation

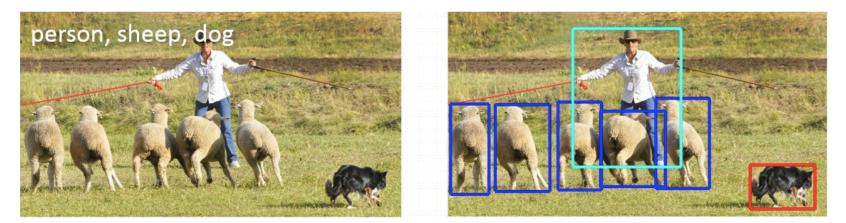
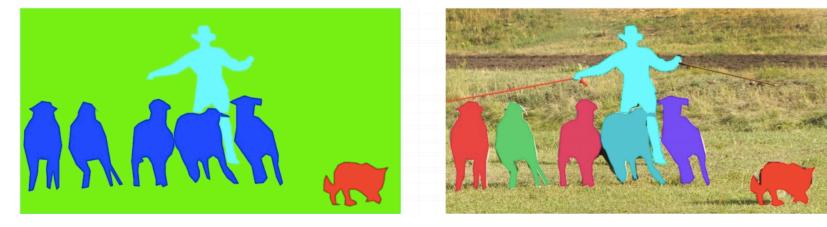


image classification

object detection

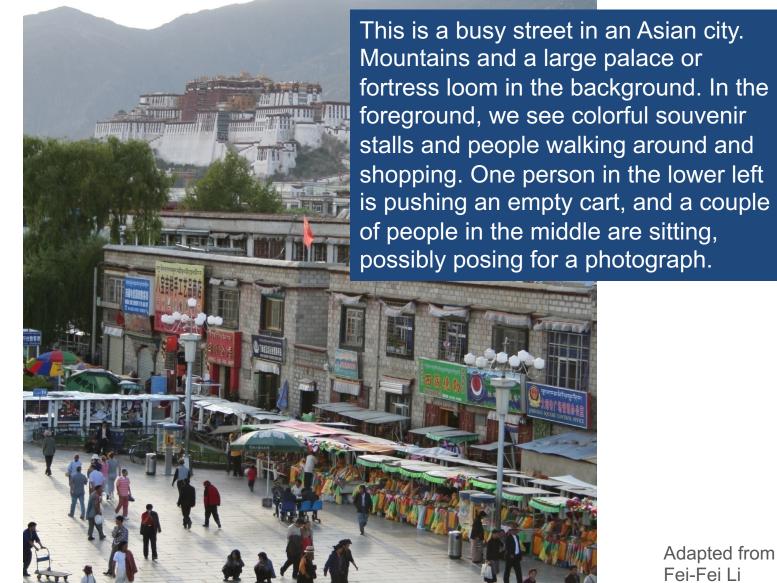


semantic segmentation

instance segmentation

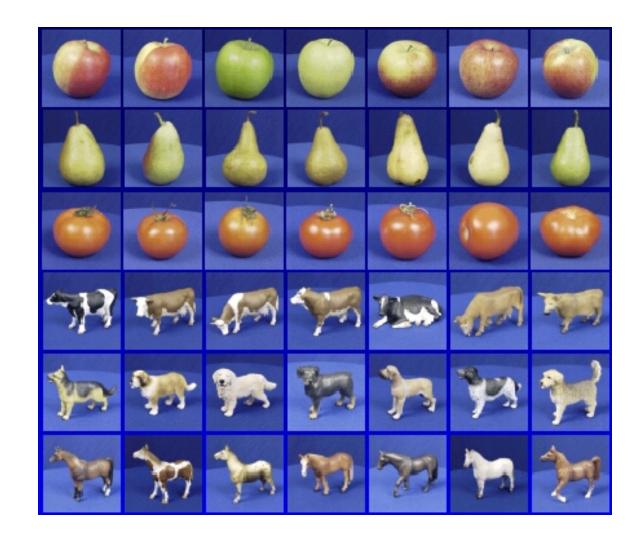
Image source

Image Description

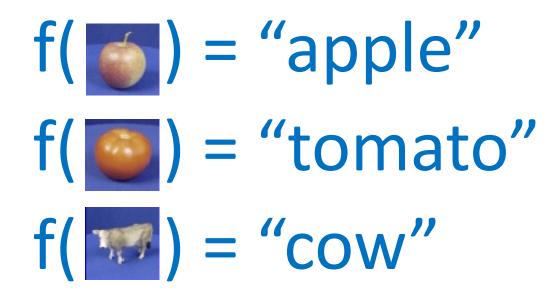


Adapted from Fei-Fei Li

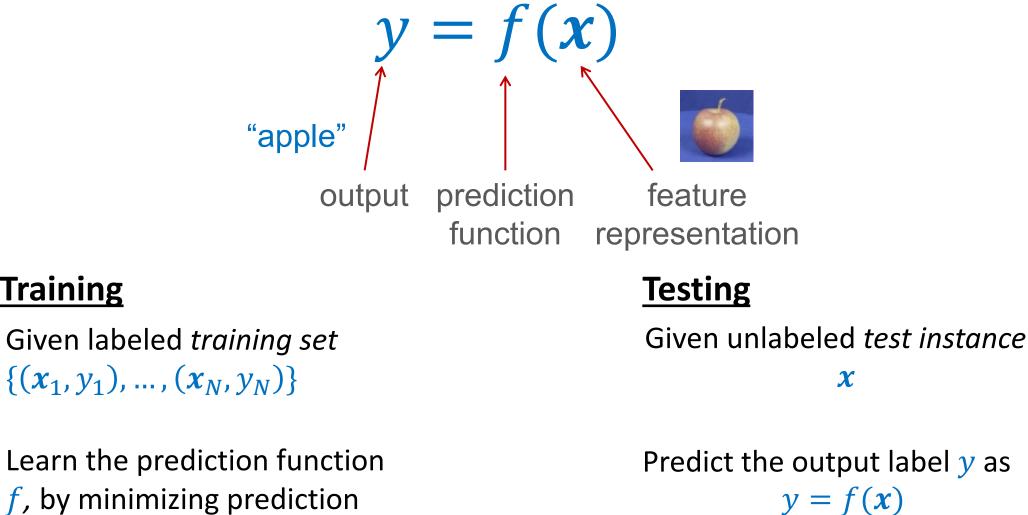
Image classification



Apply a prediction function to a feature representation of the image to get the desired output:



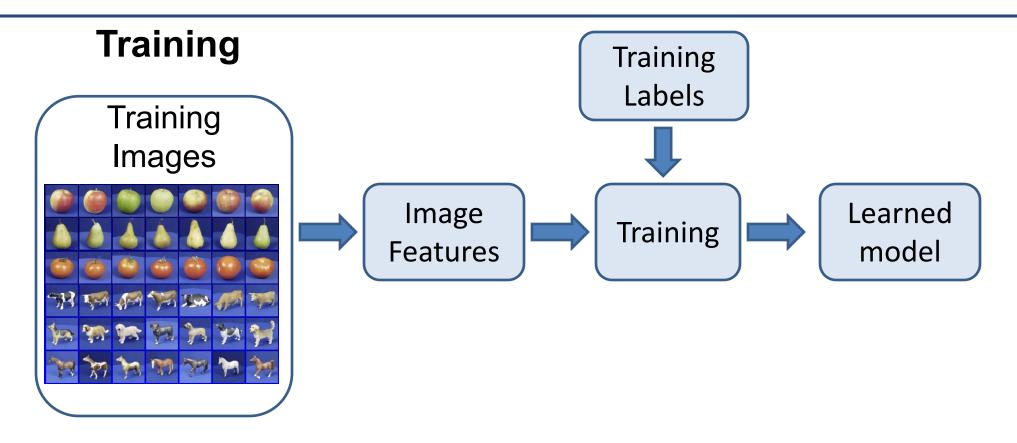
The statistical learning framework



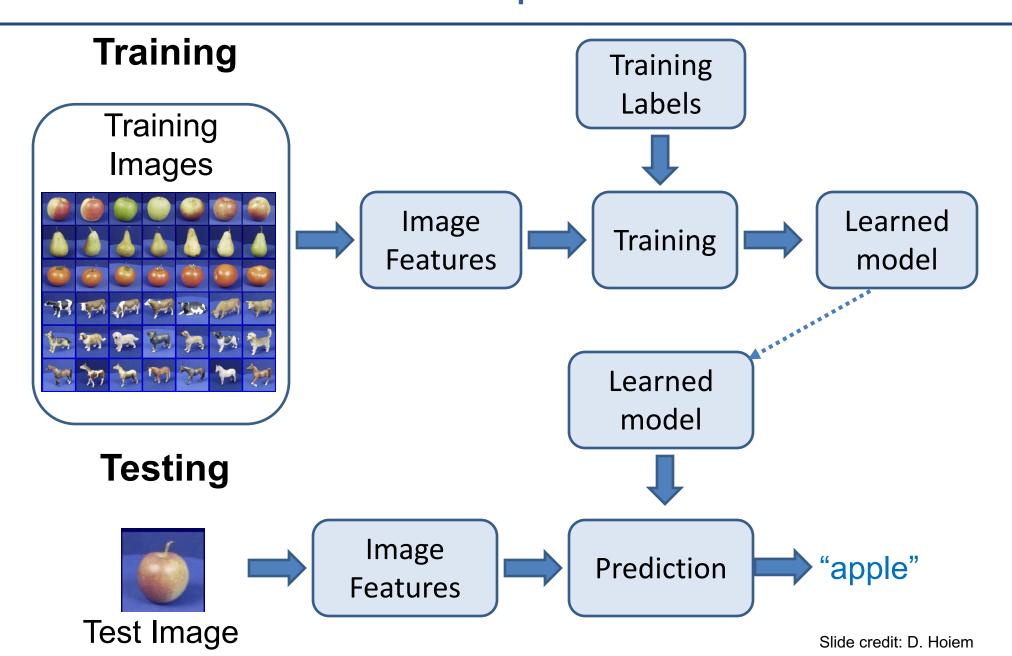
Learn the prediction function f, by minimizing prediction error on *training set*

Training

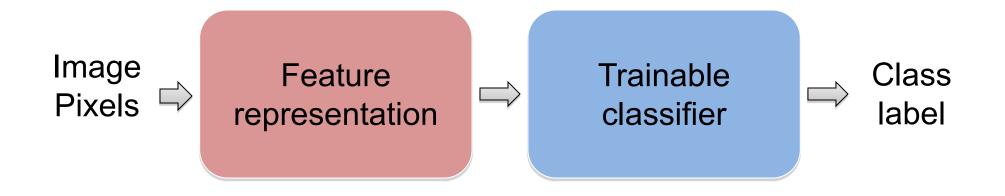
Steps



Steps

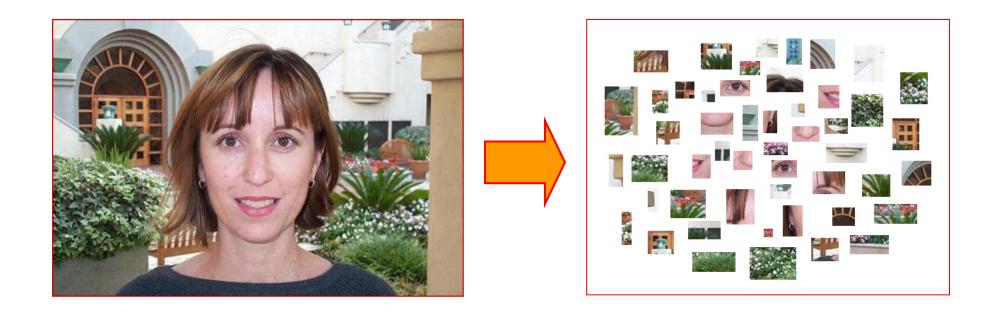


"Classic" recognition pipeline

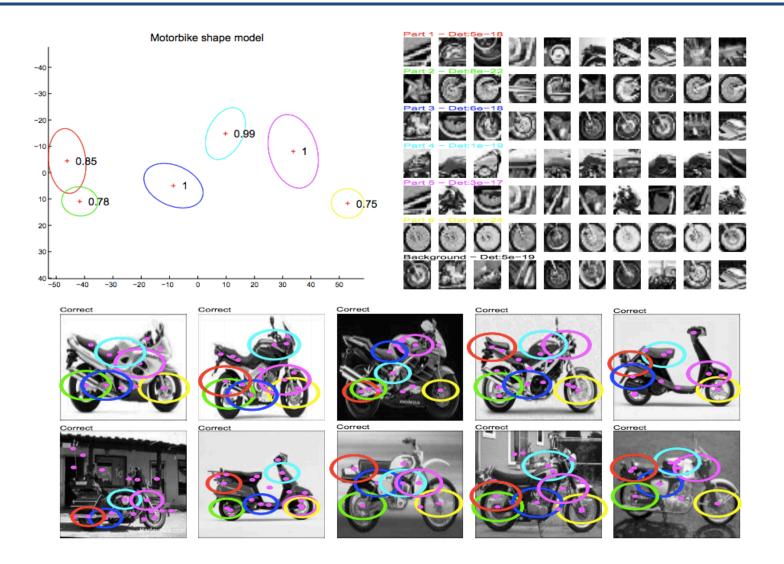


- Hand-crafted feature representation
- Off-the-shelf trainable classifier

"Classic" representation: Bag of features

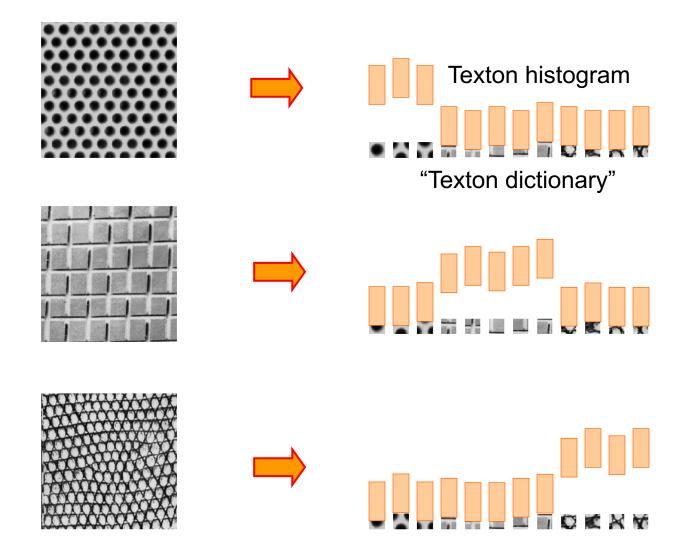


Motivation 1: Part-based models



Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

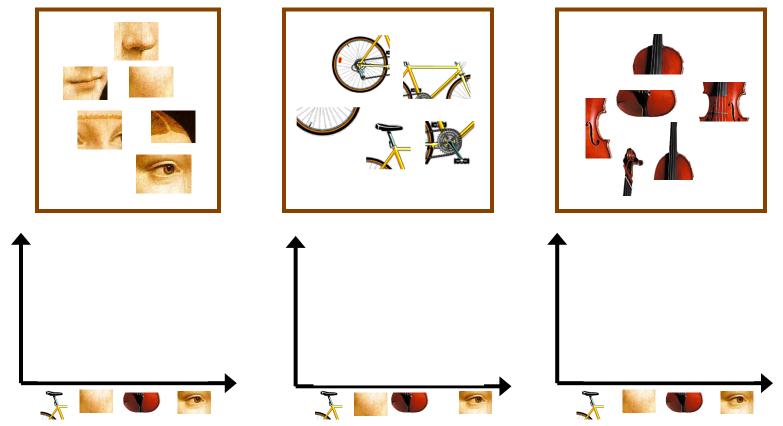
Motivation 2: Texture models



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Bag of features: Outline

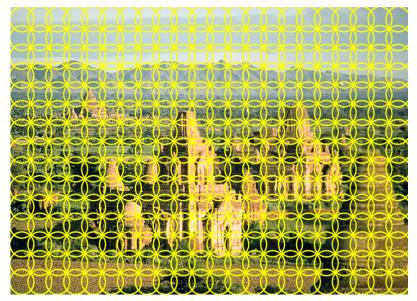
- 1. Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



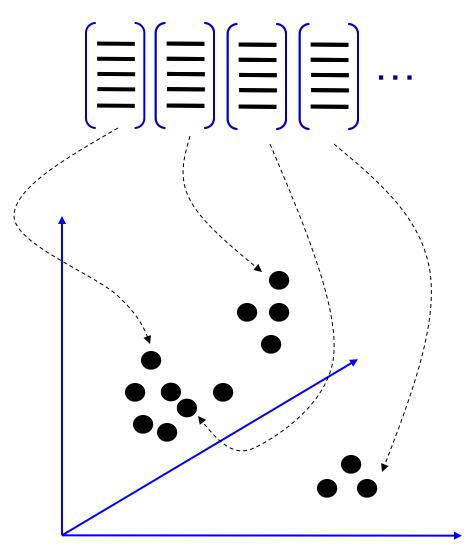
1. Local feature extraction

Sample patches and extract descriptors





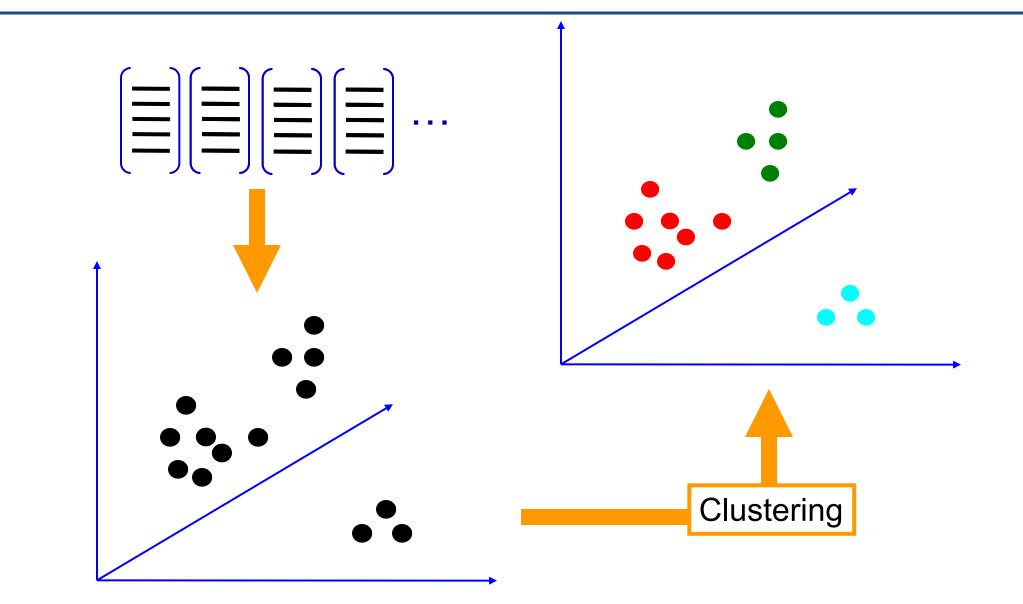
2. Learning the visual vocabulary



Extracted descriptors from the training set

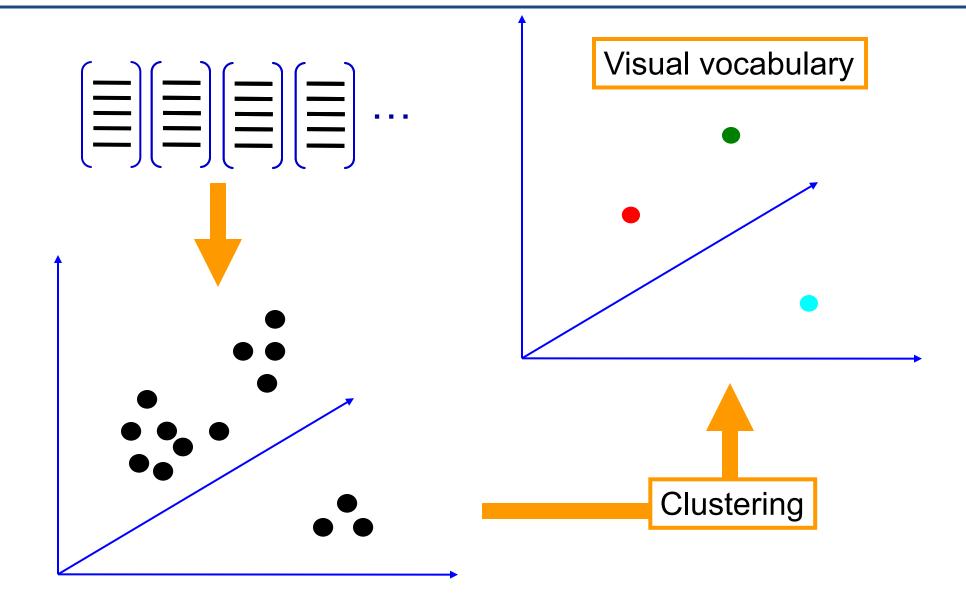
Slide credit: Josef Sivic

2. Learning the visual vocabulary



Slide credit: Josef Sivic

2. Learning the visual vocabulary



Slide credit: Josef Sivic

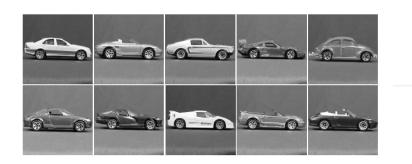
Goal: minimize sum of squared Euclidean distances between features \mathbf{x}_i and their nearest cluster centers \mathbf{m}_k

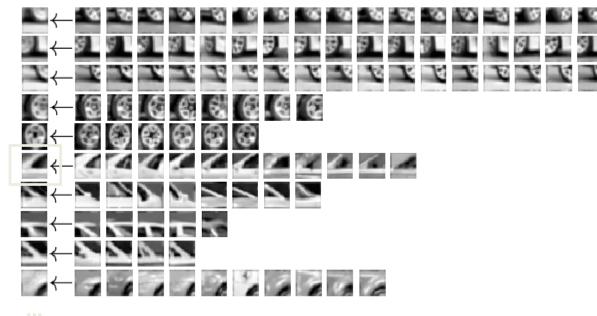
$$D(X,M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{ in } \\ \text{cluster } k}} (\mathbf{x}_i - \mathbf{m}_k)^2$$

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each feature to the nearest center
 - Recompute each cluster center as the mean of all features assigned to it

Recall: Visual vocabularies

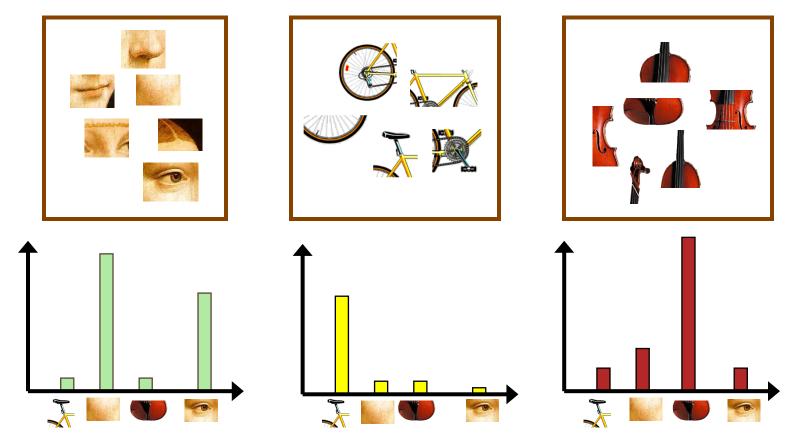




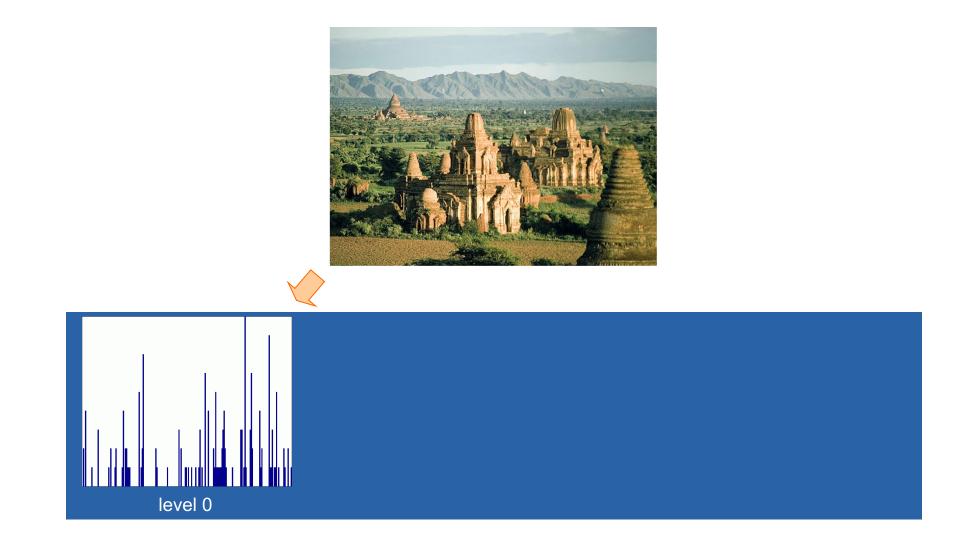
Appearance codebook

Bag of features: Outline

- 1. Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

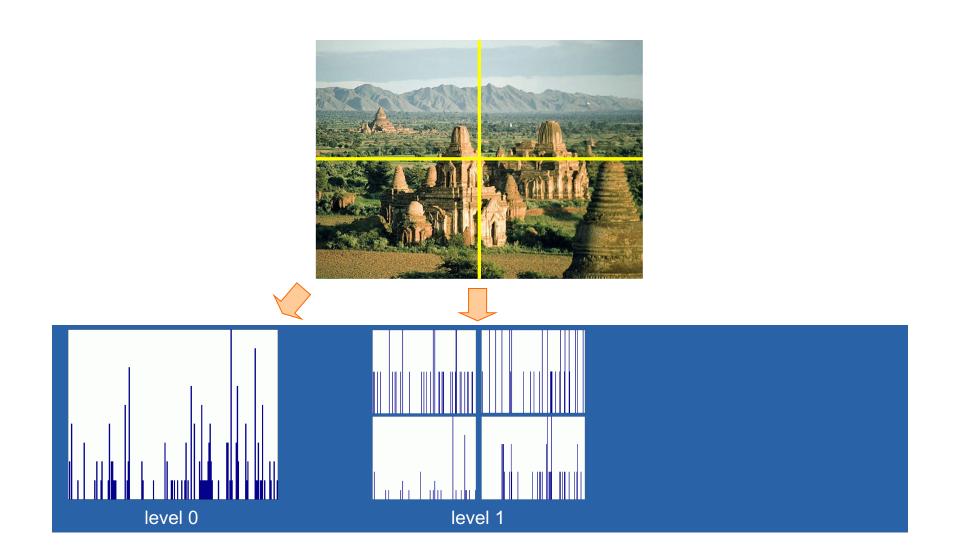


Spatial pyramids



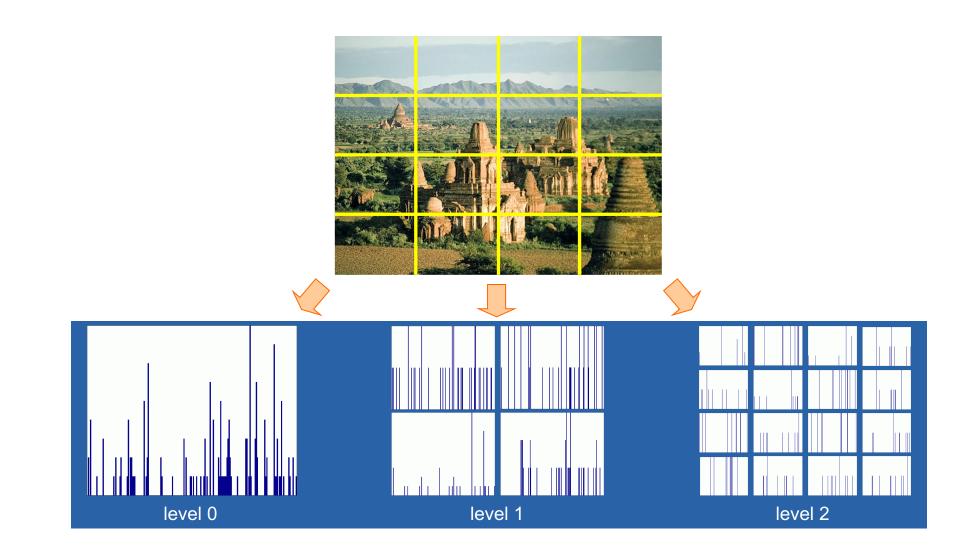
Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids



Lazebnik, Schmid & Ponce (CVPR 2006)

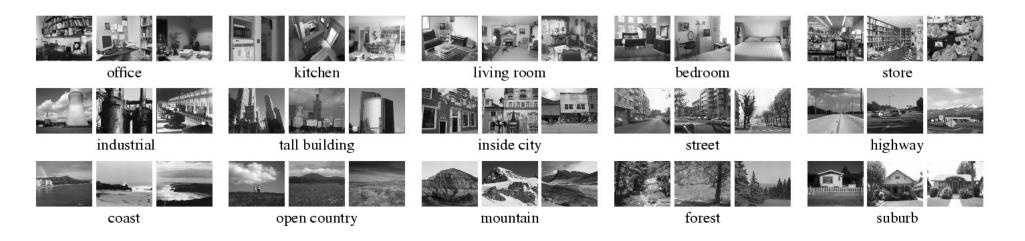
Spatial pyramids



Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

Scene classification results



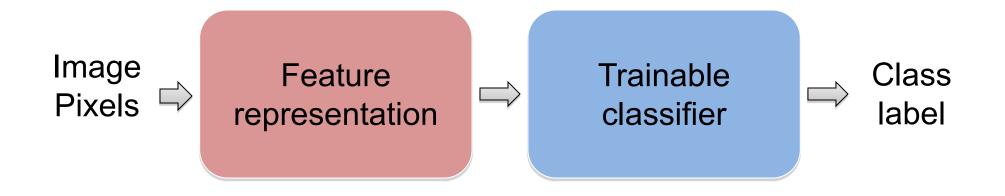
	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1 (2 \times 2)$	53.6 ± 0.3	$56.2\pm\!0.6$	77.9 ± 0.6	79.0 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3
3 (8 × 8)	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3

Spatial pyramids

Caltech101 classification results

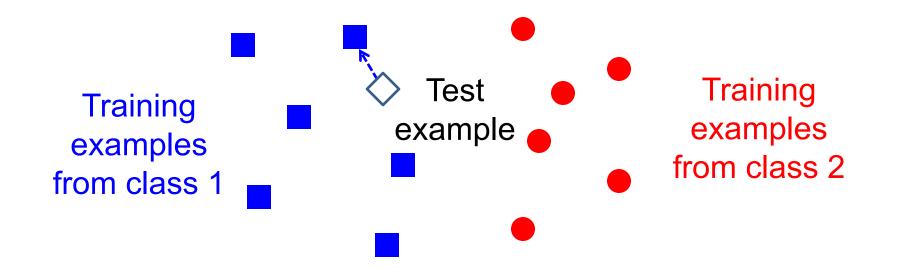
	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

"Classic" recognition pipeline



- Hand-crafted feature representation
- Off-the-shelf trainable classifier

Classifiers: Nearest neighbor



f(x) = label of the training example nearest to x

- All we need is a distance or similarity function for our inputs
- No training required!

Functions for comparing histograms

• L1 distance:
$$D(h_1, h_2) = \sum_{i=1}^N |h_1(i) - h_2(i)|$$

•
$$\chi^2$$
 distance: $D(h_1, h_2) = \sum_{i=1}^N \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)}$

• Quadratic distance (*cross-bin distance*):

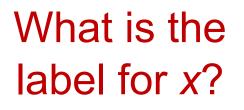
$$D(h_1, h_2) = \sum_{i,j} A_{ij} (h_1(i) - h_2(j))^2$$

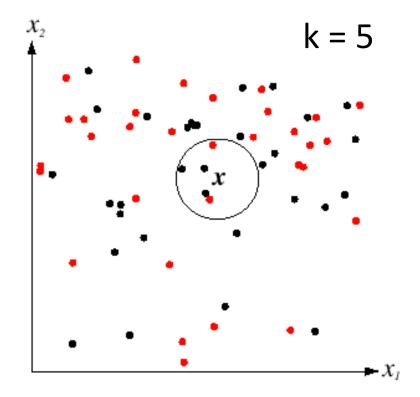
• Histogram intersection (similarity function):

$$I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$$

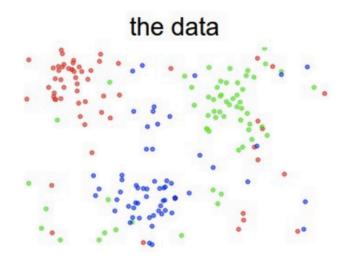
K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points





Quiz: K-nearest neighbor classifier



Which classifier is more robust to *outliers*?

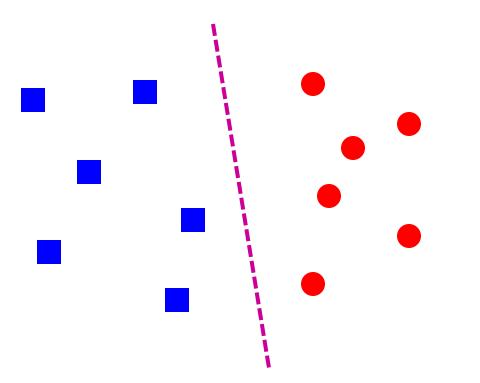
Credit: Andrej Karpathy, http://cs231n.github.io/classification/

K-nearest neighbor classifier

Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show the top 10 nearest neighbors in the training set according to pixel-wise difference.

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

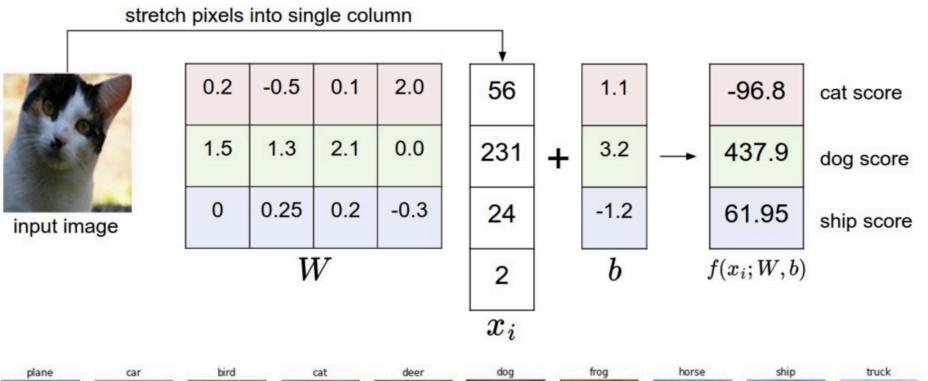
Linear classifiers

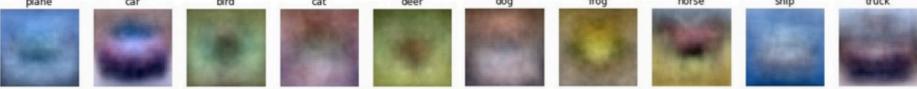


Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Visualizing linear classifiers





Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

Nearest neighbor vs. linear classifiers

Nearest Neighbors

- Pros:
 - Simple to implement
 - Decision boundaries not necessarily linear
 - Works for any number of classes
 - Nonparametric method
- Cons:
 - Need good distance function
 - Slow at test time

Linear Models

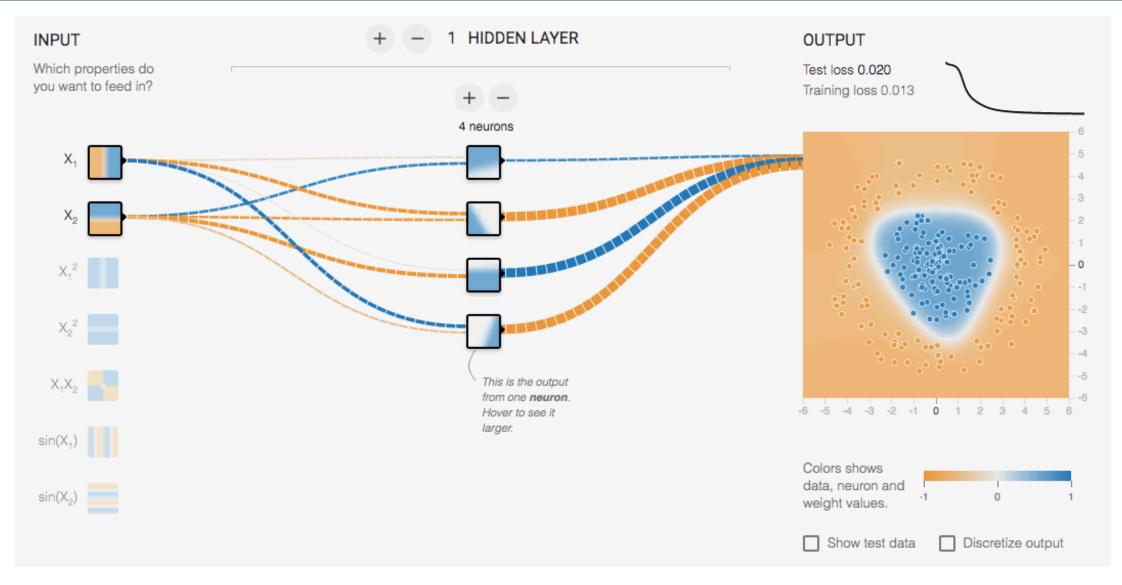
- Pros:
 - Low-dimensional *parametric* representation
 - Very fast at test time

- Cons:
 - Works for two classes
 - How to train the linear function?
 - What if data is not linearly separable?

Linear classifiers

When the data is linearly separable, there may be more than one separator (hyperplane) Which separator is best? \bigcirc \bigcirc

Review: Neural Networks

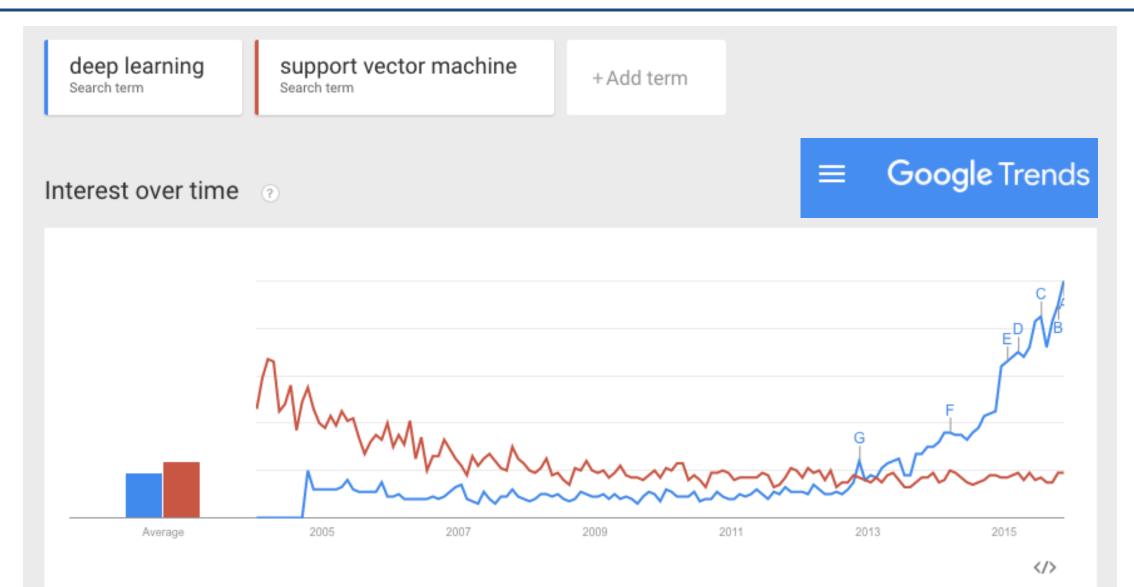


http://playground.tensorflow.org/

"Deep" recognition pipeline

- Learn a *feature hierarchy* from pixels to classifier
- Each layer extracts features from the output of previous layer
- Train all layers jointly

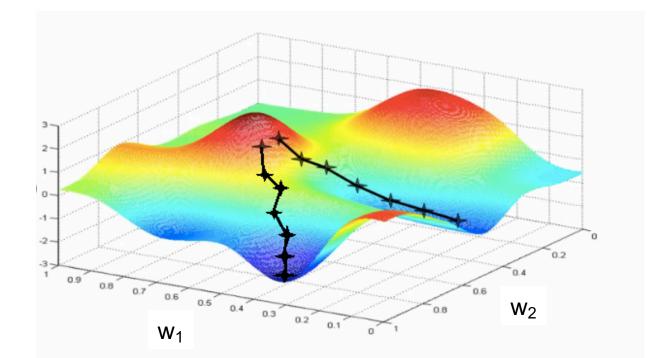
"Deep" vs. "shallow" (SVMs) Learning



Training of multi-layer networks

- Find network weights to minimize the prediction loss between true and estimated labels of training examples:
- $E(\mathbf{w}) = \sum_i l(\mathbf{x}_i, y_i; \mathbf{w})$
- Update weights by gradient descent:

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial E}{\partial \mathbf{w}}$



Training of multi-layer networks

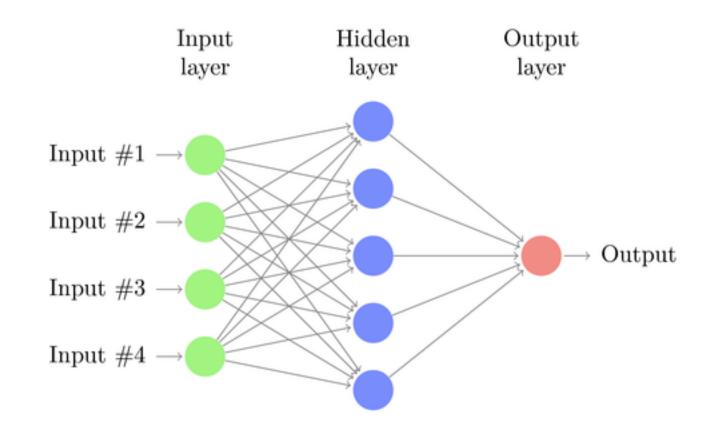
- Find network weights to minimize the prediction loss between true and estimated labels of training examples:
- $E(\mathbf{w}) = \sum_i l(\mathbf{x}_i, y_i; \mathbf{w})$
- Update weights by gradient descent:

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial E}{\partial \mathbf{w}}$

- **Back-propagation:** gradients are computed in the direction from output to input layers and combined using chain rule
- Stochastic gradient descent: compute the weight update w.r.t. one training example (or a small batch of examples) at a time, cycle through training examples in random order in multiple epochs

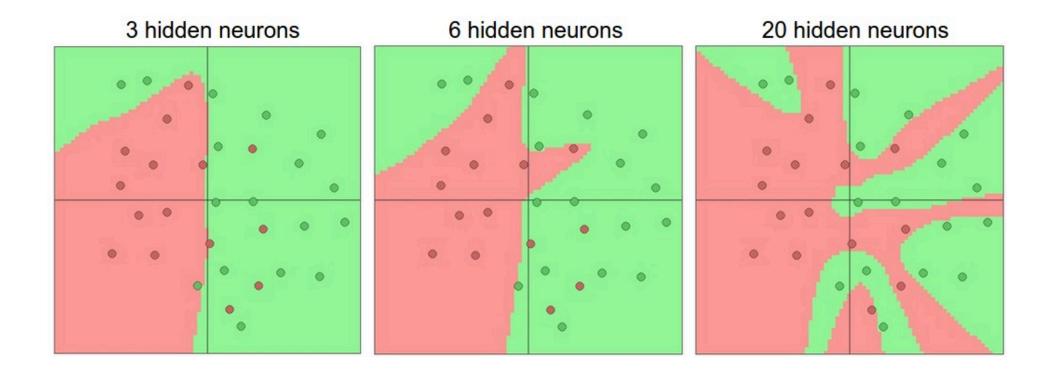
Network with a single hidden layer

 Neural networks with at least one hidden layer are <u>universal</u> <u>function approximators</u>



Network with a single hidden layer

Hidden layer size and *network capacity*:



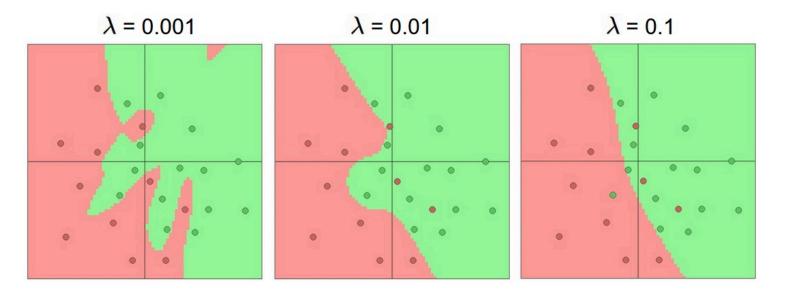
Source: <u>http://cs231n.github.io/neural-networks-1/</u>

Regularization

• It is common to add a penalty (e.g., quadratic) on weight magnitudes to the objective function:

$$E(\mathbf{w}) = \sum_{i} l(\mathbf{x}_{i}, y_{i}; \mathbf{w}) + \lambda \|\mathbf{w}\|^{2}$$

Quadratic penalty encourages network to use all of its inputs "a little" rather than a few inputs "a lot"



Source: <u>http://cs231n.github.io/neural-networks-1/</u>

Dealing with multiple classes

- If we need to classify inputs into C different classes, we put C units in the last layer to produce C *one-vs.-others* scores f_1, f_2, \dots, f_C
- Apply *softmax* function to convert these scores to probabilities:

softmax
$$(f_1, \dots, f_c) = \left(\frac{\exp(f_1)}{\sum_j \exp(f_j)}, \dots, \frac{\exp(f_c)}{\sum_j \exp(f_j)}\right)$$

If one of the inputs is much larger than the others, then the corresponding softmax value will be close to 1 and others will be close to 0

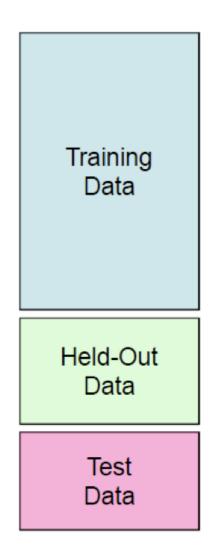
- Use log likelihood (*cross-entropy*) loss:
- $l(\mathbf{x}_i, y_i; \mathbf{w}) = -\log P_{\mathbf{w}}(y_i | \mathbf{x}_i)$

Neural networks: Pros and cons

- Pros
 - Flexible and general function approximation framework
 - Can build extremely powerful models by adding more layers
- Cons
 - Hard to analyze theoretically (e.g., training is prone to local optima)
 - Huge amount of training data, computing power may be required to get good performance
 - The space of implementation choices is huge (network architectures, parameters)

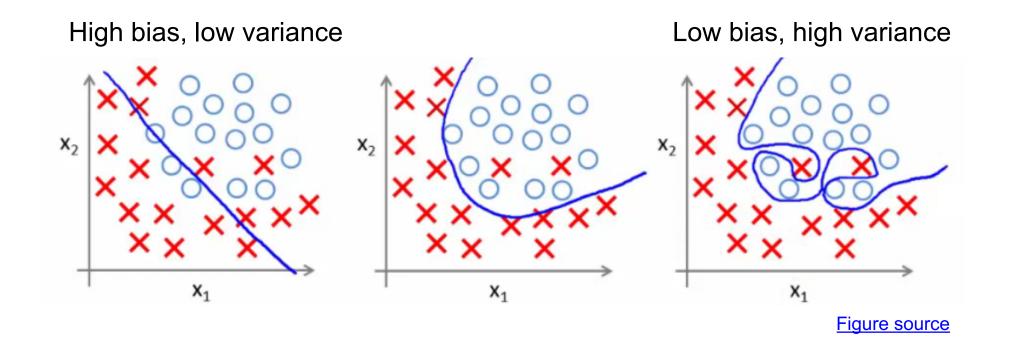
Best practices for training classifiers

- Goal: obtain a classifier with **good generalization** or performance on never before seen data
- 1. Learn *parameters* on the *training set*
- 2. Tune *hyperparameters* (implementation choices) on the *held out* **validation set**
- 3. Evaluate performance on the *test set*
 - Crucial: do not peek at the test set when iterating steps 1 and 2!



Bias-variance tradeoff

- Prediction error of learning algorithms has two main components:
 - Bias: error due to simplifying model assumptions
 - Variance: error due to randomness of training set
- **Bias-variance tradeoff** can be controlled by turning "knobs" that determine model complexity



Underfitting and overfitting

- **Underfitting:** training and test error are both *high*
 - Model does an equally poor job on the training and the test set
 - The model is too "simple" to represent the data or the model is not trained well
- **Overfitting:** Training error is *low* but test error is *high*
 - Model fits irrelevant characteristics (noise) in the training data
 - Model is too complex or amount of training data is insufficient

