
CS 4476: Computer Vision
Introduction to Object Recognition

Guest Lecturer: Judy Hoffman
Slides by Lana Lazebnik except where indicated otherwise

Introduction to recognition

Source:
Charley
Harper

https://www.charleyharperprints.com/shop/tree-of-life-giclee/

Outline

§ Overview: recognition tasks
§ Statistical learning approach
§ Classic / Shallow Pipeline

§ “Bag of features” representation
§ Classifiers: nearest neighbor, linear, SVM

§ Deep Pipeline
§ Neural Networks

Common Recognition Tasks

Adapted from
Fei-Fei Li

Image Classification and Tagging

Adapted from
Fei-Fei Li

• outdoor
• mountains
• city
• Asia
• Lhasa
• …

What is this an
image of?

Object Detection

Adapted from
Fei-Fei Li

find
pedestrians

Localize!

Activity Recognition

Adapted from
Fei-Fei Li

• walking
• shopping
• rolling a cart
• sitting
• talking
• …

What are they
doing?

Semantic Segmentation

Adapted from
Fei-Fei Li

Label Every Pixel

Semantic Segmentation

Adapted from
Fei-Fei Li

mountain

building

tree

umbrella

person

lamp

sky

building

market stall

lamp

person
person

person person ground

umbrella

Label Every Pixel

Detection, semantic and instance segmentation

semantic segmentation instance segmentation

image classification object detection

Image source

https://arxiv.org/pdf/1405.0312.pdf

Image Description

Adapted from
Fei-Fei Li

This is a busy street in an Asian city.
Mountains and a large palace or
fortress loom in the background. In the
foreground, we see colorful souvenir
stalls and people walking around and
shopping. One person in the lower left
is pushing an empty cart, and a couple
of people in the middle are sitting,
possibly posing for a photograph.

Image classification

The statistical learning framework

Apply a prediction function to a feature representation
of the image to get the desired output:

f() = “apple”
f() = “tomato”
f() = “cow”

The statistical learning framework

Training

output prediction
function

feature
representation

𝑦 = 𝑓(𝒙)

Testing
Given labeled training set
{ 𝒙(, 𝑦(, … , 𝒙+, 𝑦+ }

Learn the prediction function
𝑓, by minimizing prediction
error on training set

Given unlabeled test instance
𝒙

Predict the output label 𝑦 as
𝑦 = 𝑓(𝒙)

“apple”

Steps
Training
Labels

Training
Images

Training

Training

Image
Features

Learned
model

Slide credit: D. Hoiem

Prediction

Steps

Image
Features

Testing

Test Image

Learned
model

Slide credit: D. Hoiem

Training
Labels

Training
Images

Training

Training

Image
Features

Learned
model

“apple”

“Classic” recognition pipeline

Feature
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier

Class
label

“Classic” representation: Bag of features

Motivation 1: Part-based models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Motivation 2: Texture models

Texton histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

“Texton dictionary”

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Motivation 3: Bags of words

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Bag of features: Outline
1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary
4. Represent images by frequencies of “visual words”

1. Local feature extraction
Sample patches and extract descriptors

2. Learning the visual vocabulary

…

Slide credit: Josef Sivic

Extracted descriptors
from the training set

2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

2. Learning the visual vocabulary

Clustering

…
Visual vocabulary

Slide credit: Josef Sivic

Recall: K-means clustering
Goal: minimize sum of squared Euclidean distances between
features xi and their nearest cluster centers mk

Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:

• Assign each feature to the nearest center
• Recompute each cluster center as the mean of all features assigned to it

å å -=
k

k
i

kiMXD
cluster

cluster
inpoint

2)(),(mx

Recall: Visual vocabularies

…

Source: B. Leibe

Appearance codebook

1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary
4. Represent images by frequencies of “visual words”

Bag of features: Outline

Spatial pyramids

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids
Scene classification results

Spatial pyramids
Caltech101 classification results

“Classic” recognition pipeline

Feature
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier

Class
label

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance or similarity function for our
inputs

• No training required!

Test
example

Training
examples

from class 1

Training
examples

from class 2

Functions for comparing histograms

• L1 distance:

• χ2 distance:

• Quadratic distance (cross-bin distance):

• Histogram intersection (similarity function):

å
=

-=
N

i
ihihhhD

1
2121 |)()(|),(

()å
= +

-
=

N

i ihih
ihihhhD

1 21

2
21

21)()(
)()(),(

å -=
ji

ij jhihAhhD
,

2
2121))()((),(

å
=

=
N

i
ihihhhI

1
2121))(),(min(),(

K-nearest neighbor classifier
• For a new point, find the k closest points from training data
• Vote for class label with labels of the k points

k = 5

What is the
label for x?

Quiz: K-nearest neighbor classifier

Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Linear classifiers

Find a linear function to separate the classes:

f(x) = sgn(w × x + b)

Visualizing linear classifiers

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Nearest neighbor vs. linear classifiers
Nearest Neighbors
• Pros:

– Simple to implement
– Decision boundaries not necessarily

linear
– Works for any number of classes
– Nonparametric method

• Cons:
– Need good distance function
– Slow at test time

Linear Models
• Pros:

– Low-dimensional parametric
representation

– Very fast at test time

• Cons:
– Works for two classes
– How to train the linear function?
– What if data is not linearly separable?

Linear classifiers
When the data is linearly separable, there may
be more than one separator (hyperplane)

Which separator
is best?

Review: Neural Networks

http://playground.tensorflow.org/

http://playground.tensorflow.org/

“Deep” recognition pipeline

• Learn a feature hierarchy from pixels to classifier

• Each layer extracts features from the output of
previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3
Simple

Classifier
Image
pixels

“Deep” vs. “shallow” (SVMs) Learning

• Find network weights to minimize the prediction loss between
true and estimated labels of training examples:

• 𝐸 𝐰 = ∑0 𝑙(𝐱0, 𝑦0; 𝐰)
• Update weights by gradient descent:

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea

w1

w2

• Find network weights to minimize the prediction loss between
true and estimated labels of training examples:

• 𝐸 𝐰 = ∑0 𝑙(𝐱0, 𝑦0; 𝐰)
• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction
from output to input layers and combined using chain rule

• Stochastic gradient descent: compute the weight update w.r.t.
one training example (or a small batch of examples) at a time,
cycle through training examples in random order in multiple
epochs

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea

Network with a single hidden layer
• Neural networks with at least one hidden layer are universal

function approximators

http://neuralnetworksanddeeplearning.com/chap4.html

Network with a single hidden layer
Hidden layer size and network capacity:

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Regularization
• It is common to add a penalty (e.g., quadratic) on weight magnitudes to the

objective function:

𝐸 𝐰 =4
0

𝑙(𝐱0, 𝑦0; 𝐰) + 𝜆 𝐰 7

– Quadratic penalty encourages network to use all of its inputs “a little” rather than a few inputs “a
lot”

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Dealing with multiple classes
• If we need to classify inputs into C different classes, we put C units

in the last layer to produce C one-vs.-others scores 𝑓(, 𝑓7, … , 𝑓8
• Apply softmax function to convert these scores to probabilities:

softmax 𝑓(, … , 𝑓@ = ABC(DE)
∑F ABC(DF)

, … , ABC(DG)
∑F ABC(DF)

If one of the inputs is much larger than the others, then the corresponding softmax value
will be close to 1 and others will be close to 0

• Use log likelihood (cross-entropy) loss:
• 𝑙 𝐱0, 𝑦0;𝐰 = −log 𝑃𝐰 𝑦0 | 𝐱0

Neural networks: Pros and cons
• Pros

– Flexible and general function approximation framework
– Can build extremely powerful models by adding more layers

• Cons
– Hard to analyze theoretically (e.g., training is prone to local optima)
– Huge amount of training data, computing power may be required to

get good performance
– The space of implementation choices is huge (network architectures,

parameters)

Best practices for training classifiers

• Goal: obtain a classifier with good generalization or
performance on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters (implementation choices) on

the held out validation set
3. Evaluate performance on the test set

– Crucial: do not peek at the test set when iterating
steps 1 and 2!

Bias-variance tradeoff
• Prediction error of learning algorithms has two main components:

• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

• Bias-variance tradeoff can be controlled by turning “knobs” that
determine model complexity

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

Underfitting and overfitting
• Underfitting: training and test error are both high

– Model does an equally poor job on the training and the test set
– The model is too “simple” to represent the data or the model is not trained well

• Overfitting: Training error is low but test error is high
– Model fits irrelevant characteristics (noise) in the training data
– Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

