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Introduction to recognition

Source: 
Charley 
Harper

https://www.charleyharperprints.com/shop/tree-of-life-giclee/


Outline

§ Overview: recognition tasks
§ Statistical learning approach
§ Classic / Shallow Pipeline

§ “Bag of features” representation
§ Classifiers: nearest neighbor, linear, SVM

§ Deep Pipeline 
§ Neural Networks



Common Recognition Tasks

Adapted from 
Fei-Fei Li



Image Classification and Tagging

Adapted from 
Fei-Fei Li

• outdoor
• mountains
• city
• Asia
• Lhasa
• …

What is this an 
image of?



Object Detection

Adapted from 
Fei-Fei Li

find 
pedestrians

Localize!



Activity Recognition

Adapted from 
Fei-Fei Li

• walking
• shopping
• rolling a cart
• sitting
• talking
• …

What are they 
doing?



Semantic Segmentation

Adapted from 
Fei-Fei Li

Label Every Pixel



Semantic Segmentation

Adapted from 
Fei-Fei Li

mountain

building

tree

umbrella

person

lamp

sky

building

market stall

lamp

person
person

person person ground

umbrella

Label Every Pixel



Detection, semantic and instance segmentation

semantic segmentation instance segmentation

image classification object detection

Image source

https://arxiv.org/pdf/1405.0312.pdf


Image Description

Adapted from 
Fei-Fei Li

This is a busy street in an Asian city. 
Mountains and a large palace or 
fortress loom in the background. In the 
foreground, we see colorful souvenir 
stalls and people walking around and 
shopping. One person in the lower left 
is pushing an empty cart, and a couple 
of people in the middle are sitting, 
possibly posing for a photograph.



Image classification



The statistical learning framework

Apply a prediction function to a feature representation 
of the image to get the desired output:

f(     ) = “apple”
f(     ) = “tomato”
f(     ) = “cow”



The statistical learning framework

Training

output prediction 
function

feature 
representation

𝑦 = 𝑓(𝒙)

Testing
Given labeled training set     
{ 𝒙(, 𝑦( , … , 𝒙+, 𝑦+ }

Learn the prediction function
𝑓, by minimizing prediction 
error on training set

Given unlabeled test instance 
𝒙

Predict the output label 𝑦 as 
𝑦 = 𝑓(𝒙)

“apple”



Steps
Training 
Labels

Training 
Images

Training

Training

Image 
Features

Learned 
model

Slide credit: D. Hoiem



Prediction

Steps

Image 
Features

Testing

Test Image

Learned 
model

Slide credit: D. Hoiem

Training 
Labels

Training 
Images

Training

Training

Image 
Features

Learned 
model

“apple”



“Classic” recognition pipeline

Feature 
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier 

Class 
label



“Classic” representation: Bag of features



Motivation 1: Part-based models 

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)



Motivation 2: Texture models

Texton histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

“Texton dictionary”



Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

Motivation 3: Bags of words



US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)



US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)



US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

Motivation 3: Bags of words
Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)



Bag of features: Outline
1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary 
4. Represent images by frequencies of “visual words” 



1. Local feature extraction
Sample patches and extract descriptors



2. Learning the visual vocabulary

…

Slide credit: Josef Sivic

Extracted descriptors 
from the training set



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic



2. Learning the visual vocabulary

Clustering

…
Visual vocabulary

Slide credit: Josef Sivic



Recall: K-means clustering
Goal: minimize sum of squared Euclidean distances between 
features xi and their nearest cluster centers mk

Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:

• Assign each feature to the nearest center
• Recompute each cluster center as the mean of all features assigned to it
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Recall: Visual vocabularies

…

Source: B. Leibe

Appearance codebook



1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary 
4. Represent images by frequencies of “visual words” 

Bag of features: Outline



Spatial pyramids

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramids

level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramids

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramids
Scene classification results



Spatial pyramids
Caltech101 classification results



“Classic” recognition pipeline

Feature 
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier 

Class 
label



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance or similarity function for our 
inputs

• No training required!

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2



Functions for comparing histograms

• L1 distance:

• χ2 distance:

• Quadratic distance (cross-bin distance):

• Histogram intersection (similarity function):
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K-nearest neighbor classifier
• For a new point, find the k closest points from training data
• Vote for class label with labels of the k points 

k = 5

What is the 
label for x?



Quiz: K-nearest neighbor classifier

Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/


K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/


Linear classifiers

Find a linear function to separate the classes:

f(x) = sgn(w × x + b)



Visualizing linear classifiers

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/


Nearest neighbor vs. linear classifiers
Nearest Neighbors
• Pros:

– Simple to implement
– Decision boundaries not necessarily 

linear
– Works for any number of classes
– Nonparametric method

• Cons:
– Need good distance function
– Slow at test time

Linear Models
• Pros:

– Low-dimensional parametric
representation

– Very fast at test time

• Cons:
– Works for two classes
– How to train the linear function?
– What if data is not linearly separable?



Linear classifiers
When the data is linearly separable, there may 
be more than one separator (hyperplane)

Which separator
is best?



Review: Neural Networks

http://playground.tensorflow.org/

http://playground.tensorflow.org/


“Deep” recognition pipeline

• Learn a feature hierarchy from pixels to classifier

• Each layer extracts features from the output of 
previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3
Simple 

Classifier
Image 
pixels



“Deep” vs. “shallow” (SVMs) Learning



• Find network weights to minimize the prediction loss between 
true and estimated labels of training examples:

• 𝐸 𝐰 = ∑0 𝑙(𝐱0, 𝑦0; 𝐰)
• Update weights by gradient descent:

Training of multi-layer networks
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• Find network weights to minimize the prediction loss between 
true and estimated labels of training examples:

• 𝐸 𝐰 = ∑0 𝑙(𝐱0, 𝑦0; 𝐰)
• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction 
from output to input layers and combined using chain rule

• Stochastic gradient descent: compute the weight update w.r.t. 
one training example (or a small batch of examples) at a time, 
cycle through training examples in random order in multiple 
epochs

Training of multi-layer networks
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Network with a single hidden layer
• Neural networks with at least one hidden layer are universal 

function approximators

http://neuralnetworksanddeeplearning.com/chap4.html


Network with a single hidden layer
Hidden layer size and network capacity:

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


Regularization
• It is common to add a penalty (e.g., quadratic) on weight magnitudes to the 

objective function:

𝐸 𝐰 =4
0

𝑙(𝐱0, 𝑦0; 𝐰) + 𝜆 𝐰 7

– Quadratic penalty encourages network to use all of its inputs “a little” rather than a few inputs “a 
lot”

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


Dealing with multiple classes
• If we need to classify inputs into C different classes, we put C units 

in the last layer to produce C one-vs.-others scores 𝑓(, 𝑓7, … , 𝑓8
• Apply softmax function to convert these scores to probabilities:

softmax 𝑓(, … , 𝑓@ = ABC(DE)
∑F ABC(DF)

, … , ABC(DG)
∑F ABC(DF)

If one of the inputs is much larger than the others, then the corresponding softmax value 
will be close to 1 and others will be close to 0

• Use log likelihood (cross-entropy) loss: 
• 𝑙 𝐱0, 𝑦0;𝐰 = −log 𝑃𝐰 𝑦0 | 𝐱0



Neural networks: Pros and cons
• Pros

– Flexible and general function approximation framework
– Can build extremely powerful models by adding more layers

• Cons
– Hard to analyze theoretically (e.g., training is prone to local optima)
– Huge amount of training data, computing power may be required to 

get good performance
– The space of implementation choices is huge (network architectures, 

parameters)



Best practices for training classifiers

• Goal: obtain a classifier with good generalization or 
performance on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters (implementation choices) on 

the held out validation set
3. Evaluate performance on the test set

– Crucial: do not peek at the test set when iterating 
steps 1 and 2!



Bias-variance tradeoff
• Prediction error of learning algorithms has two main components:

• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

• Bias-variance tradeoff can be controlled by turning “knobs” that 
determine model complexity

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html


Underfitting and overfitting
• Underfitting: training and test error are both high

– Model does an equally poor job on the training and the test set
– The model is too “simple” to represent the data or the model is not trained well

• Overfitting: Training error is low but test error is high
– Model fits irrelevant characteristics (noise) in the training data
– Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

