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Image classification



The statistical learning framework

• Apply a prediction function to a feature representation of the 
image to get the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”



The statistical learning framework

y = f(x)

• Training: given a training set of labeled examples
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by 
minimizing the prediction error on the training set

• Testing: apply f to a never before seen test example x
and output the predicted value y = f(x)

output prediction 
function

feature 
representation
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Slide credit: D. Hoiem



“Classic” recognition pipeline

Feature 
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier 

Class 
label



Very brief tour of some classifiers
• K-nearest neighbor
• Perceptron
• Boosting
• SVM
• Naïve Bayes
• Bayesian network
• Randomized Forests
• Convolutional Neural networks



K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/
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Face Detection: the problem



Output of Face Detector on Test Images



Solving other “Face” Tasks 

Facial Feature Localization

Demographic
Analysis

Profile Detection 



Haar Wavelet Features

• 384 by 288 pixel images 
• 15 fps on 700 MHz Intel Pentium III J
• 24x24 detector windows
• 180K possible features
• Scanned at multiple locations/scales

Can be computed very efficiently using “integral transform”.

Introduced by Viola & Jones, CVPR 2001
“Rapid object detection using a boosted 
cascade of simple features”
• One of the most influential CV papers
• 25K citations (SIFT: 54K)



Profile Detection
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Linear classifiers aka Perceptrons

• Find a linear function to separate the classes:

f(x) = sgn(w × x + b)



Linear classifiers aka Perceptrons
• When the data is linearly separable, there may 

be more than one separator (hyperplane)

Which separator
is best?



Perceptron Learning

1. Start with w=0, b=0
2. R=max |xi|
3. For i=1:N

if yi(<wxi>+b)<=0
w += f yi xi

b += f yi R2

4. Terminate if all examples correctly classified



Nearest neighbor vs. linear classifiers
• NN pros:

– Simple to implement
– Decision boundaries not necessarily linear
– Works for any number of classes
– Nonparametric method

• NN cons:
– Need good distance function
– Slow at test time

• Linear pros:
– Low-dimensional parametric representation
– Very fast at test time

• Linear cons:
– Works for two classes
– How to train the linear function?
– What if data is not linearly separable?
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Szeliski, Chapter 14, Section 14.1.1



Weak learners
• Accurate learners = hard
• “so-so” learners = easy

• Example:
– if “buy” occurs in email, classify as SPAM

• Weak learner = “rule of thumb”



More Weak Learners
• Perceptron
• Decision stumps
• Haar wavelets:



A Super Efficient Feature Selector

• Features = Weak Classifiers
• Each round selects the optimal feature 

given:
– Previous selected features
– Exponential Loss

Adaboost Algorithm



AdaBoost

• Given a set of weak classifiers

– None much better than random

• Iteratively combine classifiers
– Form a linear combination

– Training error converges to 0 quickly
– Test error is related to training margin



Adaboost Algorithm



AdaBoost at work…
Weak 

Classifier 1

Weights
Increased

Weak
classifier 3

Weak 
Classifier 2

Final classifier is 
linear combination of 
weak classifiers:

Surprising Phenomenon:
• After all examples are classified:
• Test error keeps decreasing !
• Connection with SVM: Margin increases
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Recap: Haar Wavelet Features

“Rectangle filters”



Example Classifier for Face Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive...



Building better (and faster) classifiers

• Given a nested set of 
classifier hypothesis classes

vs false neg determined by
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Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE
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IMAGE
SUB-WINDOW

• A 1 feature classifier achieves 100% detection rate and about 
50% false positive rate.

• A 5 feature classifier achieves 100% detection rate and 40% 
false positive rate (20% cumulative)
– using data from previous stage. 

• A 20 feature classifier achieve 100% detection rate with 10% 
false positive rate (2% cumulative)



Output of Face Detector on Test Images



Feature Localization Features
• Learned features reflect the task



Profile Features 
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The problem

• Seminal paper for machine learning in CV:
– Dalal and Triggs, CVPR 2005
– Found MIT pedestrian test set too easy
– Introduces new ‘INRIA’ dataset
– Tiny datasets by today’s standards

• MIT: 500 train, 200 test
• New: 1239 train, 566 test



Hand-coded Features: HOG

• HOG = histogram of 
oriented gradients

• Very similar to SIFT
• Evaluated on regular 

(overlapping) grid
• Single scale
• 8x8 pixel cells
• 9 orientation bins See also: 

https://mccormickml.com/2013/05/09/hog-person-
detector-tutorial/
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Classifier 

• Two class example
• Linear hyperplane classifier,  f(x) = <w, x>



Margin 

• Margin of an example
• Margin of a classifier 



Learning SVMs

Intuitive maximization problem:



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



Φ:  x → φ(x)

Nonlinear SVMs
• General idea: the original input space can 

always be mapped to some higher-
dimensional feature space where the training 
set is separable:

Slide credit: Andrew Moore



Nonlinear SVMs
• The kernel trick: instead of explicitly 

computing the lifting transformation φ(x), 
define a kernel function K such that

K(xi,xj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in 
the original feature space:
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Nonlinear kernel: Example

• Consider the mapping ),()( 2xxx =j

22

2222

),(
),(),()()(
yxxyyxK

yxxyyyxxyx
+=

+=×=×jj

x2



Kernels for bags of features
• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be (inverse) L1 distance, Euclidean 
distance, χ2 distance, etc.
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for 
Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf


Summary: SVMs for image classification
1. Pick an image representation (in our case, HOG)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between 

every pair of training examples
4. Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights
5. At test time: compute kernel values for your 

test example and each support vector, and 
combine them with the learned weights to get 
the value of the decision function

Slide credit: L. Lazebnik



Pedestrian Detection Example 

• (f) weighted by the positive SVM weights
• (g) weighted by the negative SVM weights

Figure from Dalal and Triggs 2005



SVMs: Pros and cons
• Pros

– Many publicly available SVM packages:
http://www.kernel-machines.org/software

– Kernel-based framework is very powerful, flexible
– SVMs work very well in practice, even with very 

small training sample sizes

• Cons
– No “direct” multi-class SVM, must combine two-

class SVMs
– Computation, memory 

• During training time, must compute matrix of kernel 
values for every pair of examples

• Learning can take a very long time for large-scale 
problems

http://www.kernel-machines.org/software
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Fast computation with integral images
• The integral image 

computes a value at 
each pixel (x,y) that is 
the sum of the pixel 
values above and to the 
left of (x,y), inclusive

• This can quickly be 
computed in one pass 
through the image

(x,y)



Computing the integral image



Computing the integral image

• Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y) 
• Integral image: ii(x, y) = ii(x, y−1) + s(x, y)

ii(x, y-1)
s(x-1, y)

i(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);



Computing sum within a rectangle

• Let A,B,C,D be the 
values of the integral 
image at the corners of 
a rectangle

• Then the sum of original 
image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

• Only 3 additions are 
required for any size of 
rectangle!

D B

C A



Computing a rectangle feature

-1 +1
+2
-1

-2
+1

Integral 
Image


