
Object Detection:
Perceptrons, Boosting, and SVMs

Frank Dellaert
CS 4476 Computer Vision at Georgia Tech

Several Slides by Lana Lazebnik and others

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Image classification

The statistical learning framework

• Apply a prediction function to a feature representation of the
image to get the desired output:

f() = “apple”
f() = “tomato”
f() = “cow”

The statistical learning framework

y = f(x)

• Training: given a training set of labeled examples
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by
minimizing the prediction error on the training set

• Testing: apply f to a never before seen test example x
and output the predicted value y = f(x)

output prediction
function

feature
representation

Prediction

Steps
Training
Labels

Training
Images

Training

Training

Image
Features

Image
Features

Testing

Test Image

Learned
model

Learned
model

Slide credit: D. Hoiem

“Classic” recognition pipeline

Feature
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier

Class
label

Very brief tour of some classifiers
• K-nearest neighbor
• Perceptron
• Boosting
• SVM
• Naïve Bayes
• Bayesian network
• Randomized Forests
• Convolutional Neural networks

K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Face Detection: the problem

Output of Face Detector on Test Images

Solving other “Face” Tasks

Facial Feature Localization

Demographic
Analysis

Profile Detection

Haar Wavelet Features

• 384 by 288 pixel images
• 15 fps on 700 MHz Intel Pentium III J
• 24x24 detector windows
• 180K possible features
• Scanned at multiple locations/scales

Can be computed very efficiently using “integral transform”.

Introduced by Viola & Jones, CVPR 2001
“Rapid object detection using a boosted
cascade of simple features”
• One of the most influential CV papers
• 25K citations (SIFT: 54K)

Profile Detection

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Linear classifiers aka Perceptrons

• Find a linear function to separate the classes:

f(x) = sgn(w × x + b)

Linear classifiers aka Perceptrons
• When the data is linearly separable, there may

be more than one separator (hyperplane)

Which separator
is best?

Perceptron Learning

1. Start with w=0, b=0
2. R=max |xi|
3. For i=1:N

if yi(<wxi>+b)<=0
w += f yi xi

b += f yi R2

4. Terminate if all examples correctly classified

Nearest neighbor vs. linear classifiers
• NN pros:

– Simple to implement
– Decision boundaries not necessarily linear
– Works for any number of classes
– Nonparametric method

• NN cons:
– Need good distance function
– Slow at test time

• Linear pros:
– Low-dimensional parametric representation
– Very fast at test time

• Linear cons:
– Works for two classes
– How to train the linear function?
– What if data is not linearly separable?

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Szeliski, Chapter 14, Section 14.1.1

Weak learners
• Accurate learners = hard
• “so-so” learners = easy

• Example:
– if “buy” occurs in email, classify as SPAM

• Weak learner = “rule of thumb”

More Weak Learners
• Perceptron
• Decision stumps
• Haar wavelets:

A Super Efficient Feature Selector

• Features = Weak Classifiers
• Each round selects the optimal feature

given:
– Previous selected features
– Exponential Loss

Adaboost Algorithm

AdaBoost

• Given a set of weak classifiers

– None much better than random

• Iteratively combine classifiers
– Form a linear combination

– Training error converges to 0 quickly
– Test error is related to training margin

Adaboost Algorithm

AdaBoost at work…
Weak

Classifier 1

Weights
Increased

Weak
classifier 3

Weak
Classifier 2

Final classifier is
linear combination of
weak classifiers:

Surprising Phenomenon:
• After all examples are classified:
• Test error keeps decreasing !
• Connection with SVM: Margin increases

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Recap: Haar Wavelet Features

“Rectangle filters”

Example Classifier for Face Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive...

Building better (and faster) classifiers

• Given a nested set of
classifier hypothesis classes

vs false neg determined by

% False Pos

%
 D

et
ec

tio
n

0 50

50

 1
00

IMAGE
SUB-WINDOW

Classifier 1

F

NON-FACE

F

NON-FACE

FACEClassifier 3
T

F

NON-FACE

TTT
Classifier 2

F

NON-FACE

Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

• A 1 feature classifier achieves 100% detection rate and about
50% false positive rate.

• A 5 feature classifier achieves 100% detection rate and 40%
false positive rate (20% cumulative)
– using data from previous stage.

• A 20 feature classifier achieve 100% detection rate with 10%
false positive rate (2% cumulative)

Output of Face Detector on Test Images

Feature Localization Features
• Learned features reflect the task

Profile Features

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

The problem

• Seminal paper for machine learning in CV:
– Dalal and Triggs, CVPR 2005
– Found MIT pedestrian test set too easy
– Introduces new ‘INRIA’ dataset
– Tiny datasets by today’s standards

• MIT: 500 train, 200 test
• New: 1239 train, 566 test

Hand-coded Features: HOG

• HOG = histogram of
oriented gradients

• Very similar to SIFT
• Evaluated on regular

(overlapping) grid
• Single scale
• 8x8 pixel cells
• 9 orientation bins See also:

https://mccormickml.com/2013/05/09/hog-person-
detector-tutorial/

Recap: Classification
Face Detection

Linear Classifiers
Boosting

Viola-Jones
Pedestrian Detection

Support Vector Machines

Classifier

• Two class example
• Linear hyperplane classifier, f(x) = <w, x>

Margin

• Margin of an example
• Margin of a classifier

Learning SVMs

Intuitive maximization problem:

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Φ: x → φ(x)

Nonlinear SVMs
• General idea: the original input space can

always be mapped to some higher-
dimensional feature space where the training
set is separable:

Slide credit: Andrew Moore

Nonlinear SVMs
• The kernel trick: instead of explicitly

computing the lifting transformation φ(x),
define a kernel function K such that

K(xi,xj) = φ(xi) · φ(xj)

• This gives a nonlinear decision boundary in
the original feature space:

bKyby
i

iii
i

iii +=+× åå),()()(xxxx ajja

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear kernel: Example

• Consider the mapping),()(2xxx =j

22

2222

),(
),(),()()(
yxxyyxK

yxxyyyxxyx
+=

+=×=×jj

x2

Kernels for bags of features
• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be (inverse) L1 distance, Euclidean
distance, χ2 distance, etc.

å
=

=
N

i
ihihhhI

1
2121))(),(min(),(

÷
ø
ö

ç
è
æ-= 2

2121),(1exp),(hhD
A

hhK

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for
Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

Summary: SVMs for image classification
1. Pick an image representation (in our case, HOG)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between

every pair of training examples
4. Feed the kernel matrix into your favorite SVM

solver to obtain support vectors and weights
5. At test time: compute kernel values for your

test example and each support vector, and
combine them with the learned weights to get
the value of the decision function

Slide credit: L. Lazebnik

Pedestrian Detection Example

• (f) weighted by the positive SVM weights
• (g) weighted by the negative SVM weights

Figure from Dalal and Triggs 2005

SVMs: Pros and cons
• Pros

– Many publicly available SVM packages:
http://www.kernel-machines.org/software

– Kernel-based framework is very powerful, flexible
– SVMs work very well in practice, even with very

small training sample sizes

• Cons
– No “direct” multi-class SVM, must combine two-

class SVMs
– Computation, memory

• During training time, must compute matrix of kernel
values for every pair of examples

• Learning can take a very long time for large-scale
problems

http://www.kernel-machines.org/software

Bonus Slides

Integral Images

Fast computation with integral images
• The integral image

computes a value at
each pixel (x,y) that is
the sum of the pixel
values above and to the
left of (x,y), inclusive

• This can quickly be
computed in one pass
through the image

(x,y)

Computing the integral image

Computing the integral image

• Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y)
• Integral image: ii(x, y) = ii(x, y−1) + s(x, y)

ii(x, y-1)
s(x-1, y)

i(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);

Computing sum within a rectangle

• Let A,B,C,D be the
values of the integral
image at the corners of
a rectangle

• Then the sum of original
image values within the
rectangle can be
computed as:

sum = A – B – C + D

• Only 3 additions are
required for any size of
rectangle!

D B

C A

Computing a rectangle feature

-1 +1
+2
-1

-2
+1

Integral
Image

