Dense Stereo

Some Slides by Forsyth & Ponce, Jim Rehg, Sing Bing Kang
(Does not line up well with Szeliski book)
Etymology

Stereo comes from the Greek word for solid (στερεό), and the term can be applied to any system using more than one channel
Effect of Moving Camera

• As camera is shifted (viewpoint changed):
 – 3D points are projected to different 2D locations
 – Amount of shift in projected 2D location depends on depth
• 2D shifts = Parallax
Basic Idea of Stereo

Triangulate on two images of the same point to recover depth.
- Feature matching across views
- Calibrated cameras

Matching correlation windows across scan lines
Why is Stereo Useful?

- Passive and non-invasive
- Robot navigation (path planning, obstacle detection)
- 3D modeling (shape analysis, reverse engineering, visualization)
- Photorealistic rendering
Outline

• Pinhole camera model
• Basic (2-view) stereo algorithm
 – Equations
 – Window-based matching (SSD)
 – Dynamic programming
• Multiple view stereo
3D scene point P is projected to a 2D point Q in the virtual image plane.

The 2D coordinates in the image are given by

$$(u, v) = \left(f \frac{X}{Z}, f \frac{Y}{Z}\right)$$

Note: image center is $(0,0)$
Basic Stereo Derivations

Important note:
Because the camera shifts along x, $v_L = v_R$
Basic Stereo Derivations

\[P_L = (X, Y, Z) \]

\[(u_L, v_L) = \left(f \frac{X}{Z}, f \frac{Y}{Z} \right) \]

\[(u_R, v_R) = \left(f \frac{X - B}{Z}, f \frac{Y}{Z} \right) \]

Disparity:

\[d = u_L - u_R = f \frac{B}{Z} \]

\[Z = f \frac{B}{d} \]
Stereo Vision

Matching correlation windows across scan lines

$Z(x, y) = \frac{f B}{d(x, y)}$

$Z(x, y)$ is depth at pixel (x, y)
$d(x, y)$ is disparity
Components of Stereo

• Matching criterion (error function)
 – Quantify similarity of pixels
 – Most common: direct intensity difference

• Aggregation method
 – How error function is accumulated
 – Options: Pixel, edge, window, or segmented regions

• Optimization and winner selection
 – Examples: Winner-take-all, dynamic programming, graph cuts, belief propagation
Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities can be large
Correspondence Using Window-based Correlation

Matching criterion = Sum-of-squared differences
Aggregation method = Fixed window size

"Winner-take-all"
w_L and w_R are corresponding m by m windows of pixels.

We define the window function:

$$W_m(x,y) = \{ u,v \mid x - \frac{m}{2} \leq u \leq x + \frac{m}{2}, y - \frac{m}{2} \leq v \leq y + \frac{m}{2} \}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_r(x,y,d) = \sum_{(u,v) \in W_m(x,y)} [I_L(u,v) - I_R(u - d,v)]^2$$
Correspondence Using Correlation

Left

Disparity Map

Images courtesy of Point Grey Research
Image Normalization

- Images may be captured under different exposures (gain and aperture)
- Cameras may have different radiometric characteristics
- Surfaces may not be Lambertian
- Hence, it is reasonable to normalize pixel intensity in each window (to remove bias and scale):

\[
\bar{I} = \frac{1}{|W_m(x,y)|} \sum_{(u,v) \in W_m(x,y)} I(u,v) \quad \text{Average pixel}
\]

\[
\|I\|_{W_m(x,y)} = \sqrt{\sum_{(u,v) \in W_m(x,y)} [I(u,v)]^2} \quad \text{Window magnitude}
\]

\[
\hat{I}(x,y) = \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{W_m(x,y)}} \quad \text{Normalized pixel}
\]
Images as Vectors

Each window is a vector in an m^2 dimensional vector space. Normalization makes them unit length.

“Unwrap” image to form vector, using raster scan order.
Image Metrics

(Normalized) Sum of Squared Differences

\[C_{\text{SSD}}(d) = \sum_{(u,v) \in W_m(x,y)} [\hat{I}_L(u,v) - \hat{I}_R(u - d,v)]^2 \]

\[= \| w_L - w_R(d) \|^2 \]

Normalized Correlation

\[C_{\text{NC}}(d) = \sum_{(u,v) \in W_m(x,y)} \hat{I}_L(u,v)\hat{I}_R(u - d,v) \]

\[= w_L \cdot w_R(d) = \cos \theta \]

\[d^* = \arg \min_d \| w_L - w_R(d) \|^2 = \arg \max_d w_L \cdot w_R(d) \]
Caveat

• Image normalization should be used *only* when deemed necessary
• The equivalence classes of things that look “similar” are substantially larger, leading to more matching ambiguities

![Diagram showing direct intensity and normalized intensity](image-url)
Alternative: Histogram Warping

(Assumes significant visual overlap between images)

Compare and warp towards each other

Cox, Roy, & Hingorani’ 95: “Dynamic Histogram Warping”
Two major roadblocks

- Textureless regions create ambiguities
- Occlusions result in missing data
Dealing with ambiguities and occlusion

• Ordering constraint:
 – Impose same matching order along scanlines

• Uniqueness constraint:
 – Each pixel in one image maps to unique pixel in other

• Can encode these constraints easily in dynamic programming
Pixel-based Stereo

Center of left camera

Center of right camera

Left scanline

Right scanline

(Note: I’m using the actual, not virtual, image here.)
Stereo Correspondences

- Right image is reference
- Definition of occlusion/disocclusion depends on which image is considered the reference
- Moving from left to right: Pixels that “disappear” are occluded; pixels that “appear” are disoccluded

Left scanline

Right scanline

Occlusion

Disocclusion

Match
Search Over Correspondences

Three cases:

- Sequential – cost of match
- Occluded – cost of no match
- Disoccluded – cost of no match
Stereo Matching with Dynamic Programming

Dynamic programming yields the optimal path through grid. This is the best set of matches that satisfy the ordering constraint.
Ordering Constraint is not Generally Correct

- Preserves matching order along scanlines, but cannot handle “double nail illusion”
Uniqueness Constraint is not Generally Correct

- Slanted plane: Matching between M pixels and N pixels
Edge-based Stereo

- Another approach is to match *edges* rather than windows of pixels:

- Which method is better?
 - Edges tend to fail in dense texture (outdoors)
 - Correlation tends to fail in smooth featureless areas
 - Sparse correspondences
Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney
Another Example
Hallmarks of
A Good Stereo Technique

• Should not rely on order and uniqueness constraints
• Should account for occlusions
• Should account for depth discontinuity
• Should have reasonable shape priors to handle textureless regions (e.g., planar or smooth surfaces)
• Should account for non-Lambertian surfaces
• There’s a database with ground truth for testing: http://cat.middlebury.edu/stereo/data.html
Left

Disparity Map

Result of using a more sophisticated stereo algorithm

Right
View Interpolation
Result using a good technique
View Interpolation
Bottom Line: Stereo is Still Unresolved

- Depth discontinuities
- Lack of texture (depth ambiguity)
- Non-rigid effects (highlights, reflection, translucency)
From 2 views to >2 views

- More pixels voting for the right depth
- Statistically more robust
- However, occlusion reasoning is more complicated, since we have to account for *partial occlusion*:
 - Which subset of cameras sees the same 3D point?