

2. Image Formation

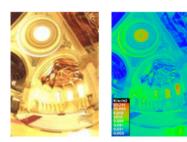
5. Segmentation

9. Stitching

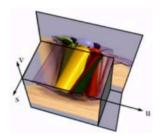
12. 3D Shape

3. Image Processing

6-7. Structure from Motion

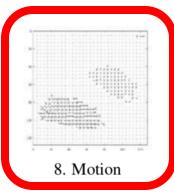


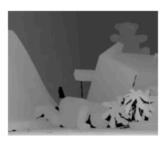
10. Computational Photography



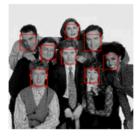
13. Image-based Rendering

4. Features





11. Stereo



14. Recognition

Credits

- Images and formulas from Szeliski
- Second half from CVPR talk by Zhaoyang Lv

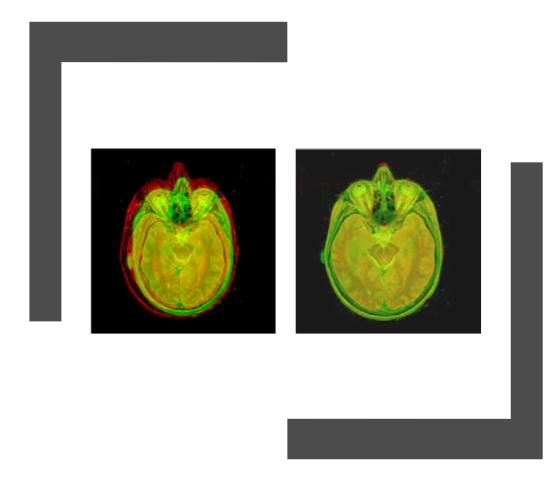
Taking a Deeper Look at the Inverse Compositional Algorithm, Zhaoyang Lv, Frank Dellaert, James M. Rehg, Andreas Geiger, CVPR 2019

Motivating problem: Video Stabilization

Original

Stabilized

Dense Motion Estimation



- Widely used!
 - Aligning images
 - Motion in video
 - Video Stabilization
- We need:
 - Error metric
 - Search technique
 - Full search
 - Hierarchical
 - Incremental

Image credit: Kybic and Unser © 2003 IEEE

Outline

- Error metric/full search
- -Hierarchical search
- -Incremental refinement

Translational Alignment

- Shift image I₁ with respect to template I₀
- Before, feature-based error:

$$E_{\rm LS} = \sum_{i} \|\boldsymbol{r}_{i}\|^{2} = \sum_{i} \|\boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{p}) - \boldsymbol{x}_{i}'\|^{2}$$

Translational Alignment

- Shift image I₁ with respect to template I₀
- Before, feature-based error:

$$E_{\mathrm{LS}} = \sum_{i} \|\boldsymbol{r}_i\|^2 = \sum_{i} \|\boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}'_i\|^2$$

Now, image ibased error:

$$E_{\text{SSD}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2 = \sum_{i} e_i^2,$$

$$E_{\text{SSD}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2 = \sum_{i} e_i^2,$$

- Sum of Squared Differences
- Assumes: brightness constancy
- If u fractional: interpolation needed
 - Bilinear (fast, good)
 - Bicubic (slower, slightly better)

Robust Error Metrics

$$E_{\text{SAD}}(\boldsymbol{u}) = \sum_{i} |I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)| = \sum_{i} |e_i|.$$

- Quadratic error is unforgiving!
- Absolute error (SAD): allows for outliers
- Differentiable robust error metrics exist

Dealing with Boundary Conditions

- Should not count pixels outside
- Add two "window" functions
- Windowed SSD metric:

 $E_{\text{WSSD}}(\boldsymbol{u}) = \sum_{i} \boldsymbol{w}_{0}(\boldsymbol{x}_{i}) \boldsymbol{w}_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) [I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2},$

Invariant το overiap: κοοτ mean square:

$$A = \sum_{i} w_0(\boldsymbol{x}_i) w_1(\boldsymbol{x}_i + \boldsymbol{u}) \qquad RMS = \sqrt{E_{\text{WSSD}}/A}$$

Violations of Brightness Constancy

• Estimate Bias and Gain

$$I_1(\boldsymbol{x} + \boldsymbol{u}) = (1 + \alpha)I_0(\boldsymbol{x}) + \beta,$$

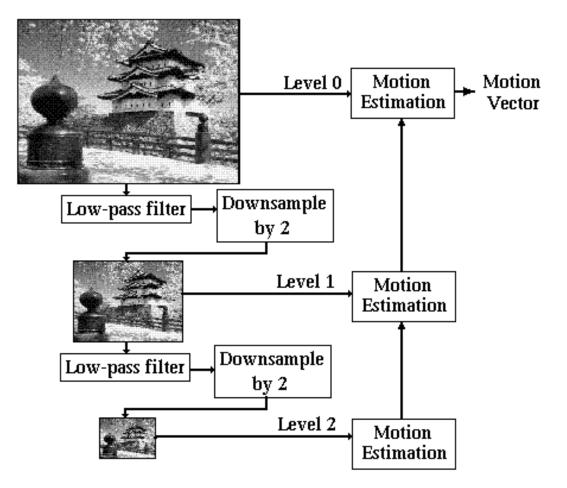
$$E_{\mathrm{BG}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - (1 + \alpha)I_0(\boldsymbol{x}_i) - \beta]^2$$

• Normalized Cross-Correlation

$$E_{\rm CC}(\boldsymbol{u}) = \sum_{i} I_0(\boldsymbol{x}_i) I_1(\boldsymbol{x}_i + \boldsymbol{u}).$$
$$E_{\rm NCC}(\boldsymbol{u}) = \frac{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}] [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]}{\sqrt{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}]^2} \sqrt{\sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]^2}}$$

Hierarchical Motion Estimation

- Build an image pyramid:
 - Low-pass
 - Decimate
- Recursively estimate motion:
 - Estimate motion at highest level
 - Use result as initial estimate at lower level



Sub-pixel Refinement

• Taylor expansion of SSD in sub-pixel update Δu :

i

$$E_{\text{LK-SSD}}(\boldsymbol{u} + \Delta \boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u} + \Delta \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2 \qquad (8.33)$$
$$\approx \sum [I_1(\boldsymbol{x}_i + \boldsymbol{u}) + \boldsymbol{J}_1(\boldsymbol{x}_i + \boldsymbol{u})\Delta \boldsymbol{u} - I_0(\boldsymbol{x}_i)]^2 \qquad (8.34)$$

$$= \sum_{i} [\boldsymbol{J}_{1}(\boldsymbol{x}_{i}+\boldsymbol{u})\Delta\boldsymbol{u}+\boldsymbol{e}_{i}]^{2}, \qquad (8.35)$$

where J is the Jacobian, i.e., gradients at x_i +u:

$$\boldsymbol{J}_1(\boldsymbol{x}_i + \boldsymbol{u}) = \nabla I_1(\boldsymbol{x}_i + \boldsymbol{u}) = \left(\frac{\partial I_1}{\partial x}, \frac{\partial I_1}{\partial y}\right)(\boldsymbol{x}_i + \boldsymbol{u})$$
(8.36)

Solve using Normal Equations

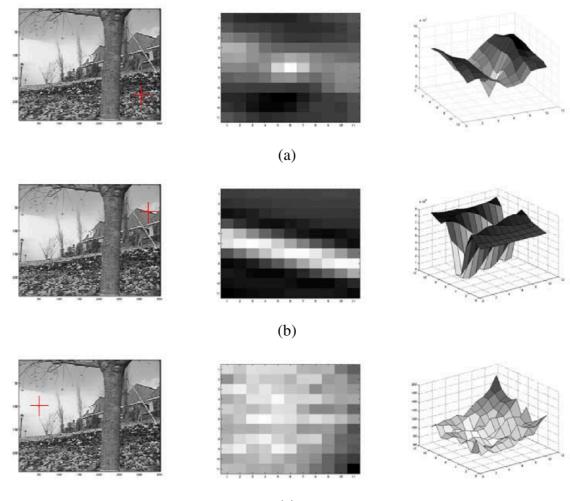
 $A\Delta u = b$

$$m{A} = \sum_{i} m{J}_{1}^{T}(m{x}_{i} + m{u}) m{J}_{1}(m{x}_{i} + m{u}) \qquad m{b} = -\sum_{i} e_{i} m{J}_{1}^{T}(m{x}_{i} + m{u})$$

- A is Hessian or "information matrix", same as Harris uses!
- RHS b is just dot product of gradient images with error ->
- Remember: feature-based translation: just mean of flow vectors !

Error

Aperture Problems and Harris



(c)

Revisiting Video Stabilization

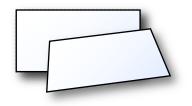
Motion Models: Translation

Translation in x and y
2 DOF
Still very shaky

Motion Models: Similarity

- * Translation in x and y
- Uniform scale and rotation
- * 4 DOF
- * Not shaky, but wobbly

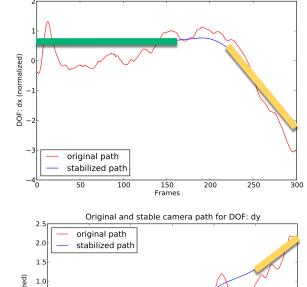
Motion Models: Homography



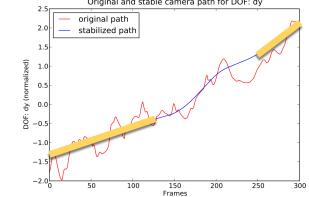
- Translation in x and y, scale and rotation
- * Skew and perspective* 8 DOF
- * Stable

Path Smoothing

- Goal: Approximate original path with stable one
 - Cinematography inspired: Properties of a stable path?
 - Tripod → Constant segment
 - ∗ Dolly or pan → Linear segment
 - Ease in and out transitions
 → Parabolic segment



Original and stable camera path for DOF: dx

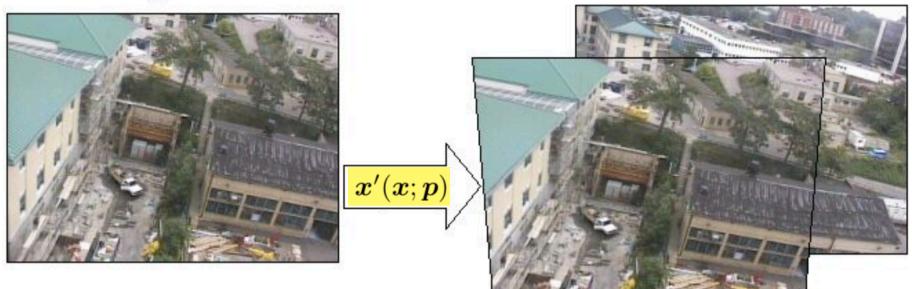


*

Parametric Motion

Template T

Image I

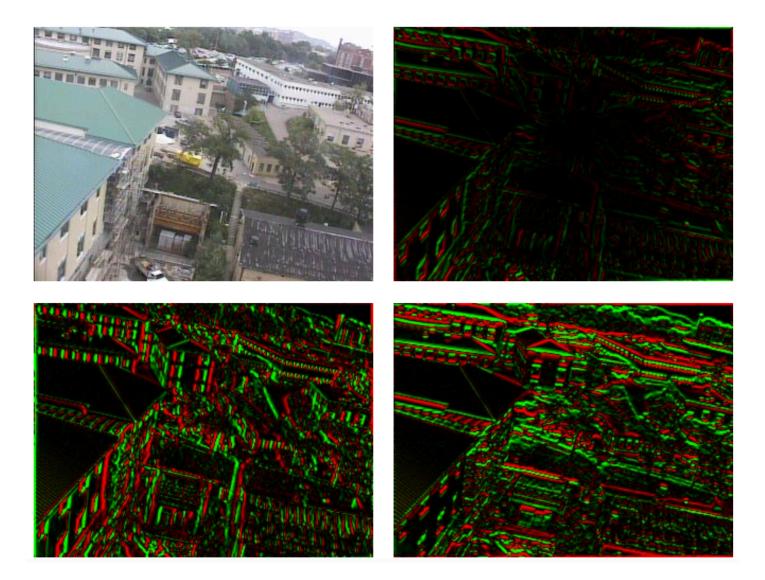


• E.g., image-based homography estimation

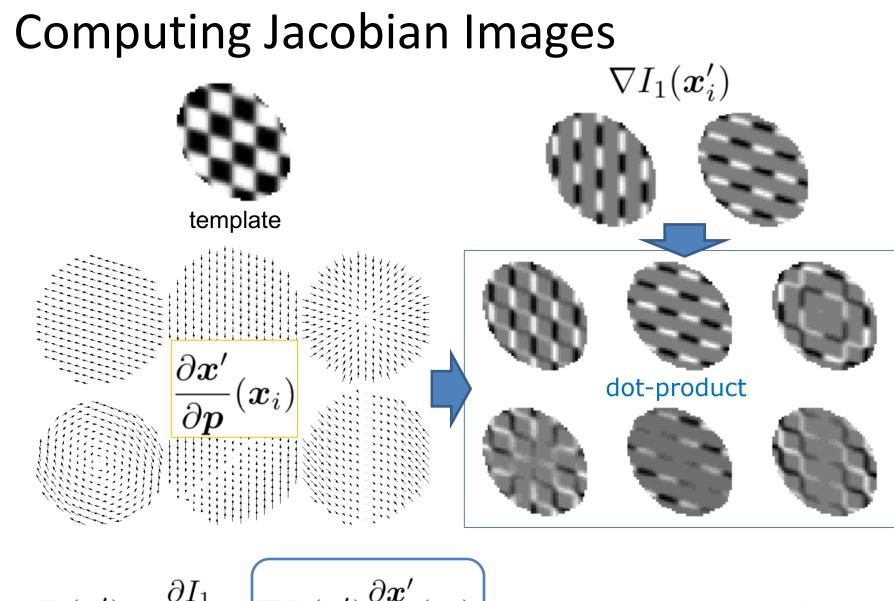
$$egin{aligned} E_{ ext{LK-PM}}(oldsymbol{p}+\Deltaoldsymbol{p}) &=& \sum_i [I_1(oldsymbol{x}'(oldsymbol{x}_i;oldsymbol{p}+\Deltaoldsymbol{p}))-I_0(oldsymbol{x}_i)]^2 \ &pprox &\sum_i [I_1(oldsymbol{x}'_i)+oldsymbol{J}_1(oldsymbol{x}'_i)\Deltaoldsymbol{p}-I_0(oldsymbol{x}_i)]^2 \end{aligned}$$

Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration

"Jacobian Images"



Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration



 $oldsymbol{J}_1(oldsymbol{x}_i') = rac{\partial I_1}{\partial oldsymbol{p}} =
abla I_1(oldsymbol{x}_i') rac{\partial oldsymbol{x}'}{\partial oldsymbol{p}}(oldsymbol{x}_i),$

(8.52)

Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration

Compositional and Inverse Compositional

- Compare three variants:
 - Original:
 - Compositional: $\sqrt{}$
 - Inverse Comp:

$$\sum_{i} [I_1(\boldsymbol{x}'(\boldsymbol{x}_i; \boldsymbol{p} + \Delta \boldsymbol{p})) - I_0(\boldsymbol{x}_i)]^2$$
(8.49)

$$\sum_{i} [\tilde{I}_1(\tilde{\boldsymbol{x}}(\boldsymbol{x}_i; \Delta \boldsymbol{p})) - I_0(\boldsymbol{x}_i)]^2$$
(8.60)

$$\sum_{i} [\tilde{I}_1(\boldsymbol{x}_i) - I_0(\tilde{\boldsymbol{x}}(\boldsymbol{x}_i; \Delta \boldsymbol{p}))]^2$$
(8.64)

- In compositional approach we warp the image I₁ and solve for an incremental update.
- Inverse compositional: search for incremental update to template instead
 - Jacobians and Hessian can now be *precomputed*

The Inverse Compositional Algorithm [S. Baker and I. Matthews, 04]

$$\mathbf{r}_{k}(\mathbf{0}) = \mathbf{I}(\boldsymbol{\xi}_{k}) - \mathbf{T}(\mathbf{0})$$

$$\Delta \boldsymbol{\xi} = (\mathbf{J}^{T} \mathbf{W} \mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{T} \mathbf{W} \mathbf{J}))^{-1} \mathbf{J}^{T} \mathbf{W} \mathbf{r}_{k}(\mathbf{0})$$

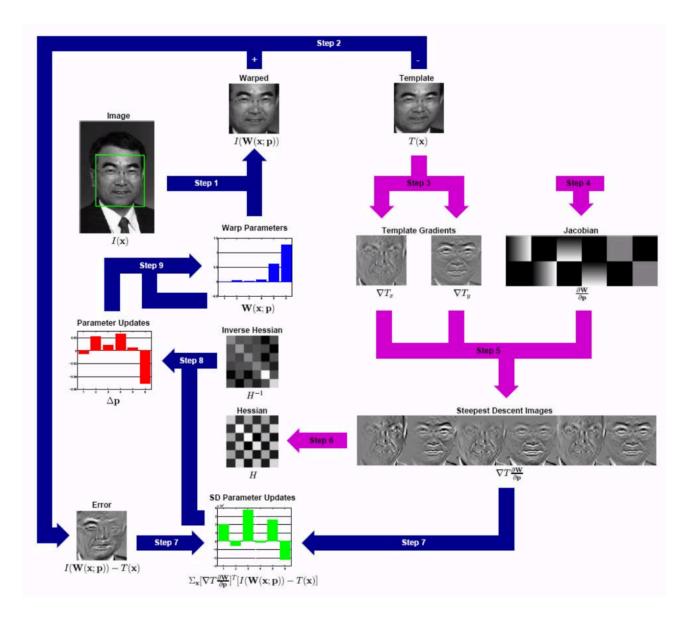
$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_{k} \circ (\Delta \boldsymbol{\xi})^{-1}$$

$$\lambda \operatorname{diag}(\mathbf{J}^{T} \mathbf{W} \mathbf{J})$$

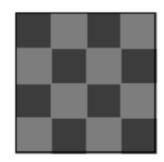
 ${f W}$ Weight matrix

 $\lambda \operatorname{diag}(\mathbf{J}^T \mathbf{W} \mathbf{J})$ Damping: very frequently used in non-linear optimization to make sure gradients are valid; "Levenberg-Marquardt"

Inverse Compositional Approach



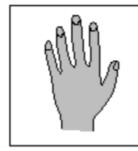
Layered Motion



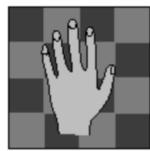
- assumption to "regularize" optical flow
 - Estimate FG and **BG** layers

One type of

Intensity map



Intensity map

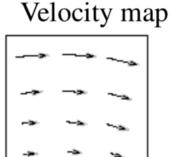


Frame 1

Alpha map

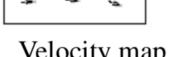
Alpha map

Frame 2

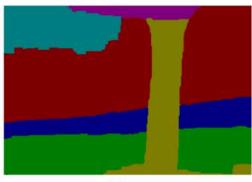


Velocity map

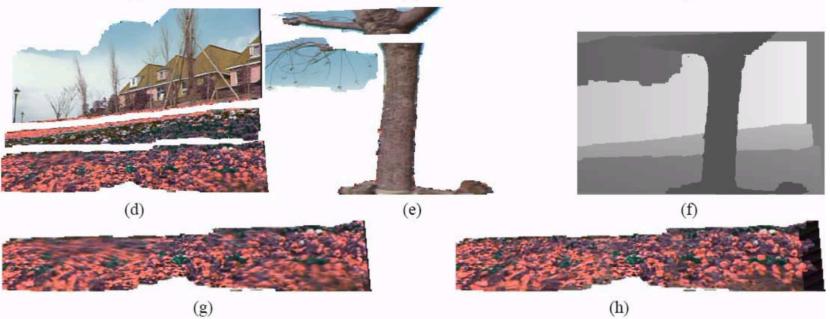
Frame 3



Layered Motion Results



(c)



(Baker, Szeliski, and Anandan 1998

Optical Flow: fully non-parametric

- Fully non-parametric model of motion
- N pixels -> N flow vectors -> 2N parameters
- Need some smoothness assumptions!
- Hard to deal with occlusion

Taking a Deeper Look at the Inverse Compositional Algorithm

 Zhaoyang Lv¹, Frank Dellaert¹, James M. Rehg¹, Andreas Geiger²
 ¹Georgia Institute of Technology
 ²Autonomous Vision Group, MPI-IS and University of Tübingen

Max Planck Institute for Intelligent Systems Autonomous Vision Group

The Inverse Compositional Algorithm [S. Baker and I. Matthews, 04]

We propose to take a **deeper** look at the Inverse Compositional algorithm **from a learning perspective.**

$$\mathbf{r}_{k}(\mathbf{0}) = \mathbf{I}(\boldsymbol{\xi}_{k}) - \mathbf{T}(\mathbf{0})$$
from a learning
$$\Delta \boldsymbol{\xi} = (\mathbf{J}^{T}\mathbf{W}\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{T}\mathbf{W}\mathbf{J}))^{-1}\mathbf{J}^{T}\mathbf{W} \mathbf{r}_{k}(\mathbf{0})$$

$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_{k} \circ (\Delta \boldsymbol{\xi})^{-1}$$

Take a Deeper Look at the Inverse Compositional algorithm

Contribution (A): Two-view Feature Encoder

$$\mathbf{r}_{k} = \mathbf{I}_{\theta}(\boldsymbol{\xi}_{k}) - \mathbf{T}_{\theta}(\mathbf{0})$$

$$\Delta \boldsymbol{\xi} = (\mathbf{J}^{T} \mathbf{W} \mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{T} \mathbf{W} \mathbf{J}))^{-1} \mathbf{J}^{T} \mathbf{W} \mathbf{r}_{k}(\mathbf{0});$$

$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_{k} \circ (\Delta \boldsymbol{\xi})^{-1}$$
(A) Two-View Feature Encoder
$$\mathbf{T}_{\theta}$$
Feature Encoder
$$\mathbf{T}_{\theta}$$

Take a Deeper Look at the Inverse Compositional algorithm

Contribution (B): Convolutional M-estimator (B) Convolutional M-estimator \mathbf{V}_{θ} $\mathbf{r}_k = \mathbf{I}_{ heta}(oldsymbol{\xi}_k) - \mathbf{T}_{ heta}(\mathbf{0})$ $\Delta \boldsymbol{\xi} = (\mathbf{J}^T \mathbf{W}_{\theta} \mathbf{J} + \text{diag} (\mathbf{J}^T \mathbf{W}_{\theta} \mathbf{J})^{-1} \mathbf{J}^T \mathbf{W}_{\theta} \mathbf{r}_k(\mathbf{0})$ $\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_k \circ (\Delta \boldsymbol{\xi})^{-1}$

Take a Deeper Look at the Inverse Compositional algorithm

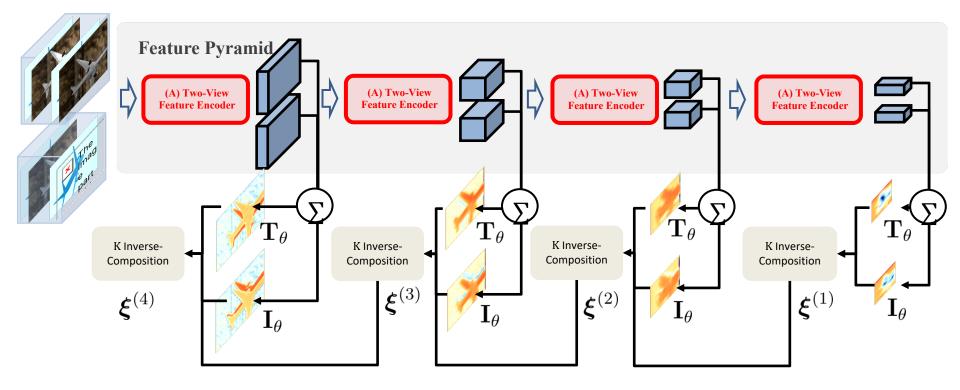
Contribution (C): Trust Region Network

$$\mathbf{r}_{k} = \mathbf{I}_{\theta}(\boldsymbol{\xi}_{k}) - \mathbf{T}_{\theta}(\mathbf{0})$$

$$\Delta \boldsymbol{\xi} = (\mathbf{J}^{T} \mathbf{W}_{\theta} \mathbf{J} + \operatorname{diag}(\boldsymbol{\lambda}_{\theta}))^{-1} \mathbf{J}^{T} \mathbf{W}_{\theta} \mathbf{r}_{k}(\mathbf{0})$$

$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_{k} \circ (\Delta \boldsymbol{\xi})^{-1}$$
(C) Trust Region Network

Coarse-to-Fine Inverse Compositional Algorithm



Visualization of Iterative 3D Rigid Motion Alignment

Τ

Ι

 $\mathbf{I}(\boldsymbol{\xi}^{\mathrm{GT}})$

DeepLK [Wang et al. ICRA, 2018]

Ours (A)

Ours (A)+(B)

Ours (A)+(B)+(C)

Conclusion

We have taken a deeper look at the inverse compositional algorithm by reformulating it with

- (A) Two-view Feature Encoder
- (B) Convolutional M-estimator
- (C) Trust Region Network

The proposed solution is learnable, accurate, small, and fast in inference.