

Multiple View Geometry

Frank Dellaert

Outline

- Intro
- Camera Review
- Stereo triangulation
- Geometry of 2 views
- Essential Matrix
- Fundamental Matrix
- Estimating E/F from point-matches

Why Consider Multiple Views?

Answer: To extract 3D structure via triangulation.

Stereo Rig

Top View
Matches on Scanlines
\qquad
\qquad

.Convenient when searching for correspondences.

Feature Matching !

Real World Challenges

Bad News: Good correspondences are hard to find

- Good news: Geometry constrains possible correspondences.
- 4 DOF between x and x^{\prime}; only 3 DOF in X.
- Constraint is manifest in the Fundamental matrix

$$
x^{\prime T} F x=0 .
$$

- F can be calculated either from camera matrices or a set of good correspondences.

Geometry of 2 views?

- What if we do not know R,t ?
- Caveat:
- My exposition uses different R , t
- but more intuitive (IMHO)
- I use $\left[R^{\top} \mid-R^{\top} t\right]=R^{\top}[| |-t]$ camera matrices
- Szeliski uses [R|t]

Epipolar Geometry

Image of Camera Center

$M=[I \mid 0]$

$M^{\prime}=R^{T}[I \mid-t]$

Example:
 Cameras Point at Each Other

Epipolar Lines

Epipoles

- Epipoles inside the image: zoom-like setup.

Epipoles

- Epipoles in near-stereo config.

Epipoles

- Camera Center C^{\prime} in first view:

$$
e=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=t
$$

- Origin C in second view:

$$
e^{\prime}=\left[\begin{array}{ll}
R^{\top} & -R^{\top} t
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-R^{\top} t
$$

Image of Camera Ray ?

$M=[I \mid 0]$

$M^{\prime}=R^{\top}[I \mid-t]$

Point at infinity

- Given p^{\prime}, what is corresponding point at infinity [x 0] ?
- Answer for any camera $\mathrm{M}^{\prime}=[\mathrm{A} \mid \mathrm{a}]$:

$$
p^{\prime}=\left[\begin{array}{ll}
A & a
\end{array}\right] *\left[\begin{array}{l}
x \\
0
\end{array}\right]=A x \Rightarrow x=A^{-1} p^{\prime}
$$

- $A^{-1}=$ Infinite homography
- In our case $M^{\prime}=\left[R^{\top} \mid-R^{\top} t\right]: \quad X=R p^{\prime}$

Sidebar: Infinite Homographies

- Homography between
- image plane
- plane at infinity

- Navigation by the stars:
- Image of stars =
function of rotation R only!
- Traveling on a sphere rotates viewer

Epipolar Line Calculation

1) Point $1=$ epipole $e=t$
2) Point $2=$ point at infinity

$$
p_{\infty}=\left[\begin{array}{ll}
I & 0
\end{array}\right] *\left[\begin{array}{c}
R p^{\prime} \\
0
\end{array}\right]=R p^{\prime}
$$

3) Epipolar line $=$ join of points 1 and 2

$$
I=t \times R p^{\prime}
$$

Epipolar lines

Epipolar Plane

Essential Matrix

- mapping from p^{\prime} to l

$$
I=t \times R p^{\prime}=[t]_{x} R \cdot p^{\prime}=E \cdot p^{\prime}
$$

- $\mathrm{E}=3^{*} 3$ matrix
- Because p is on I, we have

$$
p^{\top} E p^{\prime}=0
$$

Fundamental Matrix

Uncalibrated Case, Forsyth \& Ponce Version

$$
\begin{aligned}
& \boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}} \quad \longleftrightarrow \boldsymbol{p}^{T} \mathcal{F} \boldsymbol{p}^{\prime}=0 \quad \text { with } \mathcal{F}=\mathcal{K}^{-T} \mathcal{E} \mathcal{K}^{\prime-1} \\
& \boldsymbol{p}^{\prime}=\mathcal{K}^{\prime} \hat{\boldsymbol{p}}^{\prime}
\end{aligned}
$$

Fundamental Matrix
(Faugeras and Luong, 1992)

Fundamental Matrix

- mapping from p^{\prime} to l

$$
I=e \times A^{-1} p^{\prime}=[e]_{\times} A^{-1} \cdot p^{\prime}=F \cdot p^{\prime}
$$

- $\mathrm{F}=3^{*} 3$ matrix
- Because p is on I, we have

$$
p^{T} F p^{\prime}=0
$$

Properties of the Fundamental Matrix

- $\mathcal{F p}{ }^{\prime}$ is the epipolar line associated with p^{\prime}.
- $\mathcal{F}^{\top} \mathrm{p}$ is the epipolar line associated with p .
- $\mathcal{F}^{\mathcal{T}} \mathrm{e}=0$ and $\mathcal{F e}^{\prime}=0$.
- \mathcal{F} is singular.

Non-Linear Least-Squares Approach (Luong et al., 1993)
 Minimize
 $$
\sum_{i=1}^{n}\left[\mathrm{~d}^{2}\left(\boldsymbol{p}_{i}, \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)+\mathrm{d}^{2}\left(\boldsymbol{p}_{i}^{\prime}, \mathcal{F}^{T} \boldsymbol{p}_{i}\right)\right]
$$

with respect to the coefficients of \mathcal{F}, using an appropriate rank-2 parameterization.
$d(p, I)=$ point to line distance

$$
=(a x+b y+c w) / \operatorname{sqrt}\left(a^{2}+b^{2}\right)
$$

$d^{2}(p, l)=|a x+b y+c w|^{2} /\left(a^{2}+b^{2}\right)$

The Eight-Point Algorithm (Longuet-Higgins, 1981)

$(u, v, 1)\left(\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right)\left(\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0$

$$
\left(\begin{array}{cccccccc}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Minimize:

$$
\sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{T} \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)^{2}
$$

under the constraint $|\mathcal{F}|^{2}=1$.

The Normalized Eight-Point Algorithm (Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels:

$$
q_{i}=T p_{i} \quad q_{i}^{\prime}=T^{\prime} p_{i}^{\prime}
$$

- Use the eight-point algorithm to compute \mathcal{F} from the points q_{i} and q_{i}^{\prime}.
- Enforce the rank-2 constraint.
- Output $T^{-1} \mathcal{F} T^{\prime}$.

