

aert Fall 2019

Frank Dellaert

Outline

- Intro
- Camera Review
- Stereo triangulation
- Geometry of 2 views
 - Essential Matrix
 - Fundamental Matrix
- Estimating E/F from point-matches

Why Consider Multiple Views?

Answer: To extract 3D structure via triangulation.

Stereo Rig

Matches on Scanlines

•Convenient when searching for correspondences.

Feature Matching!

Real World Challenges

Bad News: Good correspondences are hard to find

- Good news: Geometry constrains possible correspondences.
 - 4 DOF between x and x'; only 3 DOF in X.
 - Constraint is manifest in the Fundamental matrix

$$x'^T F x = 0.$$

 F can be calculated either from camera matrices or a set of good correspondences.

Geometry of 2 views?

- What if we do not know R,t?
- Caveat:
 - My exposition uses different R, t
 - but more intuitive (IMHO)
 - -I use $[R^T|-R^Tt] = R^T[I|-t]$ camera matrices
 - Szeliski uses [R|t]

Image of Camera Center

M=[I|0]

$$M' = R^T[I|-t]$$

Example:

Cameras Point at Each Other

Epipolar Lines

Epipoles

• Epipoles inside the image: zoom-like setup.

Epipoles

• Epipoles in near-stereo config.

Epipoles

Camera Center C' in first view:

$$e = \begin{bmatrix} I & O \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} = t$$

Origin C in second view:

$$e^{t} = \begin{bmatrix} R^{T} & -R^{T}t \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -R^{T}t$$

Image of Camera Ray?

M=[I|0]

 $M' = R^T[I|-t]$

Point at infinity

- Given p', what is corresponding point at infinity [x 0]?
- Answer for any camera M'=[A|a]:

$$p' = [A \quad a] * \begin{bmatrix} x \\ 0 \end{bmatrix} = Ax \Rightarrow x = A^{-1}p'$$

- A⁻¹ = Infinite homography
- In our case M'=[R^T|-R^Tt]: X = Rp'

Sidebar: Infinite Homographies

- Homography between
 - image plane
 - plane at infinity
- Navigation by the stars:
 - Image of stars =

function of rotation R only!

- Traveling on a sphere rotates viewer

Epipolar Line Calculation

- 1) Point 1 = epipole e=t
- 2) Point 2 = point at infinity

$$p_{\infty} = \begin{bmatrix} I & 0 \end{bmatrix} * \begin{bmatrix} Rp' \\ 0 \end{bmatrix} = Rp'$$

3) Epipolar line = join of points 1 and 2

$$I = t \times Rp'$$

Frank Dellaert Fall 2019

Epipolar Plane

Essential Matrix

mapping from p' to l

$$I = t \times Rp' = [t]_{\times} R \cdot p' = E \cdot p'$$

- E = 3*3 matrix
- Because p is on I, we have

$$p^T E p' = 0$$

Fundamental Matrix

Uncalibrated Case, Forsyth & Ponce Version

Fundamental Matrix

mapping from p' to l

$$I = e \times A^{-1}p' = [e]_{\times} A^{-1} \cdot p' = F \cdot p'$$

- F = 3*3 matrix
- Because p is on l, we have

$$p^T F p' = 0$$

Properties of the Fundamental Matrix

- \cdot $\mathcal{F}p'$ is the epipolar line associated with p'.
- $\cdot \mathcal{F}^{\mathcal{T}}$ p is the epipolar line associated with p.
- $\cdot \mathcal{F}^{T}e=0$ and $\mathcal{F}e'=0$.
- ullet ${\mathcal F}$ is singular.

Non-Linear Least-Squares Approach (Luong et al., 1993)

Minimize

$$\sum_{i=1}^{n} [d^{2}(\boldsymbol{p}_{i}, \mathcal{F}\boldsymbol{p}_{i}') + d^{2}(\boldsymbol{p}_{i}', \mathcal{F}^{T}\boldsymbol{p}_{i})]$$

with respect to the coefficients of \mathcal{F} , using an appropriate rank-2 parameterization.

$$d(p, l) = point to line distance$$

= $(ax + by + cw)/sqrt(a^2 + b^2)$

$$d^{2}(p, l) = |ax + by + cw|^{2}/(a^{2} + b^{2})$$

The Eight-Point Algorithm (Longuet-Higgins, 1981)

$$(u, v, 1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \qquad (uu', uv', u, vu', vv', v, u', v', 1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$

$$\sum\limits_{i=1}^{n}(oldsymbol{p}_{i}^{T}\mathcal{F}oldsymbol{p}_{i}^{\prime})^{2}$$

$$|\mathcal{F}|^2 = 1$$

The Normalized Eight-Point Algorithm (Hartley, 1995)

• Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels:

$$q_i = T p_i$$
 $q_i' = T' p_i'$.

- Use the eight-point algorithm to compute \mathcal{F} from the points q_i and q'_i .
- Enforce the rank-2 constraint.
- Output $T^{-1}\mathcal{F}T'$.