

Review: RANSAC

- Objective:
- Robust fit of a model to data D
- Algorithm
- Randomly select s points
- Instantiate a model
- Get consensus set D_{i}
- If $\left|D_{i}\right|>T$, terminate and return model
- Repeat for N trials, return model with max $\left|D_{i}\right|$

Adaptive N

- When etha is unknown ?
- Start with etha $=50 \%, \mathrm{~N}=\mathrm{inf}$
- Repeat:
- Sample s, fit model
- -> update etha as |outliers|/n
- -> set $N=f(e t h a, s, p)$
- Terminate when N samples seen

Review: 2D Alignment

- Input:
- A set of matches $\left\{\left(x_{i}, x_{i}^{\prime}\right)\right\}$
- A parametric model $f(x ; p)$
- Output:
- Best model p^{*}
- How?

Now: 3D-2D Alignment

- Input:
- A set of 3D->2D matches $\left\{\left(X_{i}, x_{i}\right)\right\}$
- A parametric model $f(X ; p)$
- Output:
- Best model p^{*}
- How?

Pose

Estimation

- Input:

- A set of 2D measurements x_{i} of known 3D points3D X_{i}
- Parametric model is camera matrix P, i.e., $x=f(X ; P)$
- Output:
- Best camera matrix P
- How?

Review: Projective Camera Matrix

- Chapter 2 in book
- Homogeneous coord.
- 3D TO 2D projection:

$$
\mathrm{x}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}] \mathrm{X}=\mathrm{PX}
$$

where $P=3 \times 4$ camera matrix and K the 3×3 calibration $K=\left[\begin{array}{ccc}f_{x} & s & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Intuitive: camera is at a position ${ }_{w} \mathrm{t}_{\mathrm{c}}$ Indices say: camera in world coordinate frame

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Rotation is given by 3×3 matrix ${ }_{w} R_{c}$ whose columns are the camera axes ${ }_{w} X_{c},{ }_{w} y_{c, w}{ }^{2} Z_{c}$

Camera Extrinsics: a Pose in 3D

- What is the geometric meaning of R and t ??
- Transforming point X_{i} from world to camera coordinates: ${ }_{w} X_{i}-{ }_{w} t_{c}={ }_{w} R_{c} X_{i}$

Camera Extrinsics: a Pose in 3D

- Expressed in homogeneous coordinates:
- ${ }_{c} X_{i}={ }_{w} R_{c}{ }^{\top}\left({ }_{w} X_{i}-{ }_{w} t_{c}\right)={ }_{w} R_{c}{ }^{\top}\left[I \mid-{ }_{w} t_{c}\right]{ }_{w} X_{i}$

$$
=\left[{ }_{w} R_{c}{ }^{\top} \mid-{ }_{w} R_{c}^{\top}{ }_{w} t_{c}\right]_{w} X_{i}
$$

$$
=\left[\left.{ }_{c} R_{w}\right|_{c} t_{w}\right]_{w} X_{i}
$$

$$
=[R \mid t]_{w} X_{i}
$$

${ }_{c} X_{i}$

Camera Extrinsics: a Pose in 3D

- Conclusion: when people write ${ }_{c} X_{i}=[R \mid t]{ }_{w} X_{i}$ they are talking about (unintuitive) $\left[{ }_{c} R_{w} \mid{ }_{c} t_{w}\right]$
- We like use (intuitive) ${ }_{c} X_{i}={ }_{w} R_{c}^{\top}\left[I \mid-{ }_{w} t_{c}\right]_{w} X_{i}$

Revision: Projective Camera Matrix

- Homogeneous coord.
- 3D TO 2D projection:

Camera-centric: $\mathrm{x}=\mathrm{K}\left[{ }_{\mathrm{c}} \mathrm{R}_{\mathrm{w}} \mid \mathrm{ct}_{\mathrm{w}}\right] \mathrm{X}=\mathrm{PX}$ World-centric: $\quad x=K{ }_{w} R_{c}{ }^{T}\left[I \mid-{ }_{w} t_{c}\right] X=P X$
$P=$ same 3×4 camera matrix

$$
\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Looking at the (opaque) camera matrix

Can you interpret the columns of P with entities in the scene?
$P=\left[\begin{array}{llll}P^{1} & P^{2} & P^{3} & P^{4}\end{array}\right]$

Answer:

$p^{1}==$ the image of $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$
$P^{2}==$ the image of $\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
$\mathrm{p}^{3}==$ the image of $\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$
$P^{4}=-$ the image of [0001]
What are those? [0 0001] is easy...

Answer:
[0 0001 1] is the origin, so P 4 is the image of the origin.
[10llll 10000 is a point at infinity in the X direction, so it is the vanishing point of atl lines parallel with the X direction!

Vanishing points, revisited

Columns of P !

$$
P=\left[\begin{array}{llll}
P^{1} & P^{2} & P^{3} & P^{4}
\end{array}\right]
$$

P^{4} is arbitrary: wherever you defined the world origin.
https://www.artinstructionblog.com/perspective-drawing-tutorial-for-artists-part-2

Back to Pose Estimation!

- Simple algorithm: just measure the coordinates of the origin and the three vanishing points?
- Does not work $)_{\text {: }}$
- Columns are only measured up to a scale.
- 4 points * 2DOF = only 8 DOF! Missing 11-8=3
-3 missing numbers are exactly those scales.

Least Squares Pose Estimation...

- Input:
- A set of 2D measurements x_{i} of known 3D points3D X_{i}
- Parametric model is camera matrix P, i.e., $x=f(X ; P)$
- Output:
- Best camera matrix P

Pose estimation = "Resectioning"

$$
\mathbf{x}=f\left(\mathbf{X}_{w} ; \mathbf{P}\right)=\mathbf{P} \mathbf{X}_{w}=\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \cong\left[\begin{array}{c}
s \cdot u \\
s \cdot v \\
s
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
\underset{\hat{\mathbf{P}}}{\arg \min } \sum_{i=1}^{N}\left\|\hat{\mathbf{P}} \mathbf{X}_{w}^{i}-\mathbf{x}^{i}\right\|_{2} .
$$

- Opposite of triangulation.

Pose estimation

$$
\underset{\hat{\mathbf{P}}}{\arg \min } \sum_{i=1}^{N}\left\|\hat{\mathbf{P}} \mathbf{X}_{w}^{i}-\mathbf{x}^{i}\right\|_{2}
$$

- In project 3, you will use scipy.optimize.least_squares to do exactly that. Working knowledge of 3D poses will be required.
- Note before we compute the 2D reprojection error we need to convert back PX to non-homogeneous coordinates:

$$
\begin{aligned}
x_{i} & =\frac{p_{00} X_{i}+p_{01} Y_{i}+p_{02} Z_{i}+p_{03}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}} \\
y_{i} & =\frac{p_{10} X_{i}+p_{11} Y_{i}+p_{12} Z_{i}+p_{13}}{p_{20} X_{i}+p_{21} Y_{i}+p_{22} Z_{i}+p_{23}}
\end{aligned}
$$

https://docs.scipy.org/doc/scipy/reference/generated/ scipy.optimize.least squares.html

Application: VR

https://youtu.be/nrj3JE-NHMw

