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Feature-based Image Alignment

• Geometric image registration
– 2D or 3D transforms between them
– Special cases: pose estimation, calibration

Image credit Szeliski book
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2D Alignment

• 3 photos
• Translational model

Image credit Szeliski book
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2D Alignment

• Input:
– A set of matches {(xi, xi’)}
– A parametric model f(x; p)

• Output:
– Best model p*

• How?
Image credit Szeliski book
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2D translation estimation

• Input:
– Set of matches {(x1, x1’), (x2, x2’), (x3, x3’), (x4, x4’)}
– Parametric model: f(x; t) = x + t
– Parameters p == t, location of origin of A in B

• Output:
– Best model p*

Image credit Szeliski book
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2D translation estimation

• Input:
– Set of matches {(x1, x1’), (x2, x2’), (x3, x3’), (x4, x4’)}
– Parametric model: f(x; t) = x + t
– Parameters p == t, location of origin of A in B

• Question for class:
– What is your best guess for model p* ??

Image credit Szeliski book
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2D translation estimation

• How?
– One correspondence x1 = [600, 150], x1’ = [50, 50] 
– Parametric model: x’ = f(x; t) = x + t

=> t = x’- x

=> t = [50-600, 40-150] = [-550, -100]

[-550, -100]

Image credit Szeliski book
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2D translation via least-squares

• How?
– A set of matches {(xi, xi’)}
– Parametric model: f(x; t) = x + t
– Minimize sum of squared residuals:

Image credit Szeliski book
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How to solve?
Jacobian

Hessian

Normal equations
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Linear models menagerie

• All the simple 2D models are linear!
• Exception: perspective transform

Figure credit Szeliski book
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2D translation via least-squares

Image credit Szeliski book
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Oops I lied !!! Euclidean is not linear!

• All the simple 2D models are linear!
• Euclidean Jacobians are a function of θ!

Figure credit Szeliski book
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Nonlinear Least Squares



Frank Dellaert Fall 2019

Projective/H
• Jacobians a bit harder
• Parameterization:

• x’= f(x,p):

• And Jacobian:

Image credit Graphics Mill
(educational Use)
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Closed Form H
• Taking x’=f(x,p):

• Divide both sides by                                   :

• 4 matches => system of 8 linear equations

Image credit Graphics Mill
(educational Use)
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Motivation
• Estimating motion models
• Typically: points in two images
• Candidates:

– Translation
– Homography
– Fundamental matrix
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Mosaicking: Homography

www.cs.cmu.edu/~dellaert/mosaicking
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Two-view geometry (next lecture)



Frank Dellaert Fall 2019

Omnidirectional example

Images by Branislav Micusik, Tomas Pajdla, 
cmp.felk.cvut.cz/ demos/Fishepip/

http://cmp.felk.cvut.cz/demos/Fishepip/
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Simpler Example
• Fitting a straight line
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Discard Outliers

• No point with d>t
• RANSAC:

– RANdom SAmple Consensus
– Fischler & Bolles 1981
– Copes with a large proportion of outliers

Image credit Choi et al BMVC 2009
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Main Idea

• Select 2 points at random
• Fit a line
• “Support” = number of inliers
• Line with most inliers wins

Image credit shutterstock, academic use
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Why will this work ?
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Best Line has most support
• More support -> better fit

Image credit Wikipedia
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In General

• Fit a more general model
• Sample = minimal subset

– Translation ?
– Homography ?
– Euclidean transorm ?
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RANSAC

• Objective:
– Robust fit of a model to data D

• Algorithm
– Randomly select s points
– Instantiate a model
– Get consensus set Di

– If |Di|>T, terminate and return model
– Repeat for N trials, return model with max |Di|

Image credit Wikipedia
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Distance Threshold

• Requires noise distribution
• Gaussian noise with s
• Chi-squared distribution with DOF m

– 95% cumulative:
– Line, F: m=1, t=3.84 s2

– Translation, homography: m=2, t=5.99\ s2

• I.e. -> 95% prob that d<t is inlier

Image credit Wikipedia



Frank Dellaert Fall 2019

How many samples ?

• We want: at least one sample with all inliers 
• Can’t guarantee: probability P
• E.g. P = 0.99

Image credit Wikipedia
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Calculate N

• If etha = outlier probability
• proportion of inliers p = 1-etha
• P(sample with all inliers) = ps

• P(sample with an outlier) = 1-ps

• P(N samples an outlier) = (1-ps)^N
• We want P(N samples an outlier) < 1-P e.g. 0.01
• (1-ps)^N < 1-P
• N > log(1-P)/log(1-ps)

Image credit Wikipedia
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Example

• P=0.99
• s=2, etha=5% => N=2
• s=2, etha=50% => N=17
• s=4, etha=5% => N=3
• s=4, etha=50% => N=72
• s=8, etha=5% => N=5
• s=8, etha=50% => N=1177

Image credit Wikipedia
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Remarks

• N = f(etha), not the number of points
• N increases steeply with s

Image credit Wikipedia
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Threshold T

• Terminate if |Di|>T
• Rule of thumb: T » #inliers
• So, T = (1-etha)n = pn

Image credit Wikipedia
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Adaptive N

• When etha is unknown ?
• Start with etha = 50%, N=inf
• Repeat:

– Sample s, fit model
– -> update etha as |outliers|/n
– -> set N=f(etha, s, p)

• Terminate when N samples seen

Image credit Wikipedia


