

2. Image Formation

5. Segmentation

9. Stitching

12. 3D Shape

3. Image Processing

6-7. Structure from Motion

10. Computational Photography

13. Image-based Rendering

8. Motion

11. Stereo

14. Recognition

Points and patches			
4.1.1	Feature detectors		
4.1.2	Feature descriptors		
4.1.3	Feature matching		
4.1.4	Feature tracking		
4.1.5	Application: Performance-driven animation		
Edges			
4.2.1	Edge detection		
4.2.2	Edge linking		
4.2.3	Application: Edge editing and enhancement		
Lines			
4.3.1	Successive approximation		
4.3.2	Hough transforms		
4.3.3	Vanishing points		
4.3.4	Application: Rectangle detection		
	Points 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Edges 4.2.1 4.2.2 4.2.3 Lines 4.3.1 4.3.2 4.3.3 4.3.4		

4.1	Points	and patches
	4.1.1	Feature detectors
	4.1.2	Feature descriptors
	4.1.3	Feature matching
	4.1.4	Feature tracking
	4.1.5	Application: Performance-driven animation
4.2	Edges	
	4.2.1	Edge detection
	4.2.2	Edge linking
	4.2.3	Application: Edge editing and enhancement
4.3	Lines	
	4.3.1	Successive approximation
	4.3.2	Hough transforms
	4.3.3	Vanishing points
	4.3.4	Application: Rectangle detection

Detectors

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_{11}^{(1)}, \dots, x_{n_n}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{2} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

 $\langle \mathbf{n} \rangle$

History

- Moravec 1980
- Harris Corners 1988
- [Wolf & Platt 1993: FCN!]
- SIFT (Lowe) 2004
- FAST 2006 (learning!)
- SURF 2006
- ORB 2011

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector [Harris88]

• Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix} \stackrel{1. \text{ Image derivatives }}{(\text{optionally, blur first})} \stackrel{1. \text{ Image derivatives }}{(1 + 1)^{2}} \stackrel{1. \text{ Image derivative }}{(1 + 1)^{2}} \stackrel{1. \text{ I$$

har

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

1

Deep Detectors

TILDE: A Temporally Invariant Learned DEtector CVPR 2015

Yannick Verdie^{1,*} Kwang Moo Yi^{1,*} Pascal Fua¹ Vincent Lepetit² ¹Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) ²Institute for Computer Graphics and Vision, Graz University of Technology

(a) Stack of training images

(b) Desired response on positive samples

(c) Regressor response for a new image

(d) Keypoints detected in the new image

- Train on images from webcams: fixed view, different times
- Learn CNN-like regressor
- Loss = repeatability

Descriptors

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

Image representations

Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Images from Dave Kauchak

Image Representations: Histograms

Histogram: Probability or count of data in each bin

- Joint histogram
 - Requires lots of data
 - Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

Images from Dave Kauchak

What kind of things do we compute histograms of?

• Histograms of oriented gradients

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)

SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Ensure smoothness

- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:
 - 4 in space times 2 in orientation

Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2

– renormalize

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

- Count = 4 : Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

Shape Context Descriptor

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

Keypoint descriptor

Deep Descriptors

LIFT: Learned Invariant Feature Transform ECCV 2016

Kwang Moo Yi^{*,1}, Eduard Trulls^{*,1}, Vincent Lepetit², Pascal Fua¹

¹Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) ²Institute for Computer Graphics and Vision, Graz University of Technology

- Three networks: detection, orientation, description
- detection+orientation -> STN -> descriptor
- Trained separately :-(

SIFT vs. LIFT

- Interest point = ill-defined -> self-supervised
- MagicPoint -> SuperPoint

MagicPoint

SuperPoint Results

D2-Net: A Trainable CNN for *Joint Description and Detection* of Local Features CVPR 2019

Mihai Dusmanu^{1,2,3} Ignacio Rocco^{1,2} Tomas Pajdla⁴ Marc Pollefeys^{3,5} Josef Sivic^{1,2,4} Akihiko Torii⁶ Torsten Sattler⁷

- Tensor viewed as descriptors and detector maps
- VGG16-based, loss encourages distinctiveness and repeatability
- Results beat the star of the art in day-night and indoor localization, but not in more traditional settings (Superpoint shines for HPatches, GeoDesc for SFM)

Matching

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ each interest point. \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views

Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos

Distance: 0.34, 0.30, 0.40 Distance: 0.61 Distance: 1.22

Nearest Neighbor Distance Ratio

- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio puts matches in order of confidence.

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

SIFT Repeatability

Lowe IJCV 2004

SIFT Repeatability

