

2. Image Formation

5. Segmentation

9. Stitching

12. 3D Shape

3. Image Processing

6-7. Structure from Motion

10. Computational Photography

13. Image-based Rendering

8. Motion

11. Stereo

14. Recognition

Points and patches			
4.1.1	Feature detectors		
4.1.2	Feature descriptors		
4.1.3	Feature matching		
4.1.4	Feature tracking		
4.1.5	Application: Performance-driven animation		
Edges			
4.2.1	Edge detection		
4.2.2	Edge linking		
4.2.3	Application: Edge editing and enhancement		
Lines			
4.3.1	Successive approximation		
4.3.2	Hough transforms		
4.3.3	Vanishing points		
4.3.4	Application: Rectangle detection		
	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Edges 4.2.1 4.2.2 4.2.3 Lines 4.3.1 4.3.2 4.3.3		

4.1	Points	and patches
	4.1.1	Feature detectors
	4.1.2	Feature descriptors
	4.1.3	Feature matching
	4.1.4	Feature tracking
	4.1.5	Application: Performance-driven animation
4.2	Edges	
	4.2.1	Edge detection
	4.2.2	Edge linking
	4.2.3	Application: Edge editing and enhancement
4.3	Lines	
	4.3.1	Successive approximation
	4.3.2	Hough transforms
	4.3.3	Vanishing points
	4.3.4	Application: Rectangle detection

Correspondence across views

 Correspondence: matching points, patches, edges, or regions across images

Example: estimating "fundamental matrix" that corresponds two views

Slide from Silvio Savarese

Example: structure from motion

Applications

- Feature points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Project 2: interest points and local features

 Note: "interest points" = "keypoints", also sometimes called "features"

Interest points defined

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Overview of Keypoint Matching

1. Find a set of distinctive keypoints

- 2. Define a region around each keypoint
- 3. Compute a local descriptor from the normalized region
- 4. Match local descriptors

Goals for Keypoints

Detect points that are *repeatable* and *distinctive*

Invariant Local Features

•Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ each interest point. \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

 Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Laplace Harris-/Hessian-Affine EBR and IBR MSER Salient Regions

Others...

[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk & Schmid '01]
[Mikolajczyk & Schmid '04]
[Tuytelaars & Van Gool '04]
[Matas '02]
[Kadir & Brady '01]

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Source: A. Efros

Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^2$$

Change in appearance of window w(x,y) for the shift [*u*,*v*]:

Change in appearance of window *w*(*x*,*y*) for the shift [*u*,*v*]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

E(u, v)

Change in appearance of window *w*(*x*,*y*) for the shift [*u*,*v*]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^{2}$$

We want to find out how this function behaves for small shifts

But this is very slow to compute naively. O(window_width² * shift_range² * image_width²)

O($11^2 * 11^2 * 600^2$) = 5.2 billion of these 14.6 thousand per pixel in your image

Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

Recall Taylor series expansion. A function f can be approximated around point a as

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Change in appearance of window w(x,y)for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u,y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

The quadratic approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:
$$M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

α: constant (0.04 to 0.06)

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector [Harris88]

• Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix} \stackrel{1. \text{ Image derivatives }}{(\text{optionally, blur first})} \stackrel{1. \text{ Image derivatives }}{(1 + 1)^{2}} \stackrel{1. \text{ Image derivative }}{(1 + 1)^{2}} \stackrel{1. \text{ I$$

har

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

1

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

·

. .

