
2. Image Formation

5. Segmentation

9. Stitching
12. 3D Shape

3. Image Processing

6-7. Structure from Motion

10. Computational Photography

13. Image-based Rendering

11. Stereo

8. Motion

14. Recognition
4.1 Points and patches 207
4.1.1 Feature detectors 209
4.1.2 Feature descriptors 222
4.1.3 Feature matching 225
4.1.4 Feature tracking 235
4.1.5 Application: Performance-driven animation 237
4.2 Edges 238
4.2.1 Edge detection 238
4.2.2 Edge linking 244
4.2.3 Application: Edge editing and enhancement 249
4.3 Lines 250
4.3.1 Successive approximation 250
4.3.2 Hough transforms 251
4.3.3 Vanishing points 254
4.3.4 Application: Rectangle detection 257
4.1 Points and patches 207
4.1.1 Feature detectors 209
4.1.2 Feature descriptors 222
4.1.3 Feature matching 225
4.1.4 Feature tracking 235
4.1.5 Application: Performance-driven animation 237
4.2 Edges 238
4.2.1 Edge detection 238
4.2.2 Edge linking 244
4.2.3 Application: Edge editing and enhancement 249
4.3 Lines 250
4.3.1 Successive approximation 250
4.3.2 Hough transforms 251
4.3.3 Vanishing points 254
4.3.4 Application: Rectangle detection 257

Correspondence across views

- Correspondence: matching points, patches, edges, or regions across images

Example: estimating "fundamental matrix" that corresponds two views

Example: structure from motion

Applications

- Feature points are used for:
- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval

- Object recognition

Project 2: interest points and local features

- Note: "interest points" = "keypoints", also sometimes called "features"

Interest points defined

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
- Which points would you choose?

Overview of Keypoint Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Compute a local descriptor from the normalized region

$$
d\left(f_{A}, f_{B}\right)<T
$$

4. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Why extract features?

- Motivation: panorama stitching
- We have two images - how do we combine them?

Local features: main components

1) Detection: Identify the interest points
2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_{1}=\left[x_{1}^{(1)}, \ldots, x_{d}^{(1)}\right]$ each interest point.
3) Matching: Determine correspondence between descriptors in two views

$$
\mathbf{x}_{2}=\left[x_{1}^{(2)}, \ldots, x_{d}^{(2)}\right]
$$

Characteristics of good features

- Repeatability
- The same feature can be found in several images despite geometric and photometric transformations
- Saliency
- Each feature is distinctive
- Compactness and efficiency
- Many fewer features than image pixels
- Locality
- A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.

No chance to find true matches!

- Yet we have to be able to run the detection procedure independently per image.

Goal: descriptor distinctiveness

- We want to be able to reliably determine which point goes with which.

- Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) Detection: Identify the interest points

Many Existing Detectors Available

Hessian \& Harris
Laplacian, DoG
Harris-/Hessian-Laplace
Harris-/Hessian-Affine
EBR and IBR
MSER
Salient Regions
Others...
[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk \& Schmid '01]
[Mikolajczyk \& Schmid '04]
[Tuytelaars \& Van Gool '04]
[Matas ‘02]
[Kadir \& Brady ‘01]

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":
significant change in all directions

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, v} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

But this is very slow to compute naively. O(window_width ${ }^{2}$ * shift_range ${ }^{2}$ * image_width ${ }^{2}$)

O(11^{2} * 11^{2} * $\left.600^{2}\right)=5.2$ billion of these
 14.6 thousand per pixel in your image

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

Recall Taylor series expansion. A function f can be approximated around point a as

$$
f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots .
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of $E(u, v)$ in the neighborhood of $(0,0)$ is given by the second-order Taylor expansion:

$$
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{l}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
u & v]
\end{array}\right]\left[\begin{array}{ll}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{w v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Corner Detection: Mathematics

Local quadratic approximation of $E(u, v)$ in the neighborhood of $(0,0)$ is given by the second-order Taylor expansion:

$$
\begin{array}{cc}
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{c}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{v v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
\text { Always } 0 & E(u, v) \\
\begin{array}{c}
\text { First } \\
\text { derivative } \\
\text { is } 0
\end{array} & \\
&
\end{array}
$$

Corner Detection: Mathematics

The quadratic approximation simplifies to

where M is a second moment matrix computed from image derivatives:

$$
\begin{gathered}
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
M=\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
\end{gathered}
$$

Corners as distinctive interest points

$$
M=\sum w(x, y)\left[\begin{array}{ll}
I_{x} I_{x} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y} I_{y}
\end{array}\right]
$$

2×2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

$$
I_{x} \Leftrightarrow \frac{\partial I}{\partial x}
$$

$$
I_{y} \Leftrightarrow \frac{\partial I}{\partial y} \quad I_{x} I_{y} \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}
$$

Interpreting the second moment matrix
The surface $E(u, v)$ is locally approximated by a quadratic form. Let's try to understand its shape.

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v)$: $\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v)$: $\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const This is the equation of an ellipse.
Diagonalization of $\mathrm{M}: \quad M=R^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] R$
The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :

Corner response function

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

α : constant (0.04 to 0.06)

Harris corner detector

1) Compute M matrix for each image window to get their cornerness scores.
2) Find points whose surrounding window gave large corner response ($f>$ threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector ${ }_{[H a r i s 88]}$

- Second moment matrix

4. Cornerness function - both eigenvalues are strong har $=\operatorname{det}\left[\mu\left(\sigma_{I}, \sigma_{D}\right)\right]-\alpha\left[\operatorname{trace}\left(\mu\left(\sigma_{I}, \sigma_{D}\right)\right)^{2}\right]=$ $g\left(I_{x}^{2}\right) g\left(I_{y}^{2}\right)-\left[g\left(I_{x} I_{y}\right)\right]^{2}-\alpha\left[g\left(I_{x}^{2}\right)+g\left(I_{y}^{2}\right)\right]^{2}$
5. Non-maxima suppression

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

Harris Detector: Steps

Find points with large corner response: $R>$ threshold

Harris Detector: Steps

Take only the points of local maxima of R

Harris Detector: Steps

