

9. Stitching

12. 3D Shape

3. Image Processing

6-7. Structure from Motion

10. Computational Photography

13. Image-based Rendering

4. Features

8. Motion

11. Stereo

14. Recognition

	3.1	Point o	perators	101
		3.1.1	Pixel transforms	103
		3.1.2	Color transforms	104
		3.1.3	Compositing and matting	105
		3.1.4	Histogram equalization	107
		3.1.5	Application: Tonal adjustment	111
	3.2	Linear	filtering	111
		3.2.1	Separable filtering	115
		3.2.2	Examples of linear filtering	117
		3.2.3	Band-pass and steerable filters	118
(3.3	More n	eighborhood operators	122
		3.3.1	Non-linear filtering	122
		3.3.2	Morphology	127
		3.3.3	Distance transforms	129
		3.3.4	Connected components	131
	3.4	Fourier	transforms	132
		3.4.1	Fourier transform pairs	136
		3.4.2	Two-dimensional Fourier transforms	140
		3.4.3	Wiener filtering	140
		3.4.4	Application: Sharpening, blur, and noise removal	144
	3.5	Pyrami	ds and wavelets	144
		3.5.1	Interpolation	145
		3.5.2	Decimation	148
		3.5.3	Multi-resolution representations	150
		3.5.4	Wavelets	154
		3.5.5	Application: Image blending	160

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

Bilateral filtering

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Morphological Operators

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.

	3.1	Point operators	01
		3.1.1 Pixel transforms	.03
		3.1.2 Color transforms	.04
		3.1.3 Compositing and matting	.05
		3.1.4 Histogram equalization	07
		3.1.5 Application: Tonal adjustment	11
	3.2	Linear filtering	11
		3.2.1 Separable filtering	15
		3.2.2 Examples of linear filtering	17
		3.2.3 Band-pass and steerable filters	18
	3.3	More neighborhood operators	22
		3.3.1 Non-linear filtering	22
		3.3.2 Morphology	27
		3.3.3 Distance transforms	29
		3.3.4 Connected components	.31
(3.4	Fourier transforms	.32
		3.4.1 Fourier transform pairs	.36
		3.4.2 Two-dimensional Fourier transforms	40
		3.4.3 Wiener filtering	40
		3.4.4 <i>Application</i> : Sharpening, blur, and noise removal	.44
	3.5	Pyramids and wavelets	44
		3.5.1 Interpolation	45
		3.5.2 Decimation	48
		3.5.3 Multi-resolution representations	50
		3.5.4 Wavelets	54
		3.5.5 Application: Image blending	.60

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Slide: Hoiem

Thinking in Frequency

Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a superposition of sinusoidal and cosinusoidal vibrations. He developed a mathematical theory of heat in *Théorie Analytique de la Chaleur (Analytic Theory of Heat)*, (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. Fourier believed that his health would be improved by wrapping himself up in blankets, and in this state he tripped down the stairs in his house and killed himself. The paper of Galois which he had taken home to read shortly before his death was never recovered.

SEE ALSO: Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein

Slides: Hoiem, Efros, and others

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can rewritten as a weighted sum sines and cosines of different frequencies.

- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

• example : $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

Slides: Efros

Example: Music

 We think of music in terms of frequencies at different magnitudes

Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude:
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$
 Phase: $\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$

Fourier Transform Pairs

Fourier Transforms of Filters

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$$

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

$$g^*h = F^{-1}[F[g]F[h]]$$

Filtering in spatial domain

copyright 2000 chills/bills/

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

Is convolution invertible?

- If convolution is just multiplication in the Fourier domain, isn't deconvolution just division?
- Sometimes, it clearly is invertible (e.g. a convolution with an identity filter)
- In one case, it clearly isn't invertible (e.g. convolution with an all zero filter)
- What about for common filters like a Gaussian?

But you can't invert multiplication by 0

• But it's not quite zero, is it...

Let's experiment on Novak

Convolution

FFT

10

-2

Deconvolution?

10

iFFT

But under more realistic conditions

10

8

6

2

-2

Random noise, .000001 magnitude

FFT

But under more realistic conditions

10

8

6

2

-2

Random noise, .0001 magnitude

But under more realistic conditions

-2

Random noise, .001 magnitude

With a random filter...

Random noise, .001 magnitude

Deconvolution is hard

- Active research area.
- Even if you know the filter (non-blind deconvolution), it is still very hard and requires strong *regularization*.
- If you don't know the filter (blind deconvolution) it is harder still.