
Deep Learning 
in Image Processing

Frank Dellaert
CS 4476 Computer Vision

Topics: 
– Image Filtering 101
– CNNs 101
– Image Processing Pipelines

Many slides from Stanford’s CS231N by Fei-Fei Li, Justin Johnson, Serena Yeung, as well as some slides on filtering from Devi 
Parikh and Kristen Grauman, who may in turn have borrowed some from others







Contrast

• g(x) = a f(x), a=1.1



Brightness

• g(x) = f(x) + b, b=16





Image filtering

• Compute a function of the local neighborhood at 
each pixel in the image
– Function specified by a “filter” or mask saying how to 

combine values from neighbors.

• Uses of filtering:
– Enhance an image (denoise, resize, etc)
– Extract information (texture, edges, etc)
– Detect patterns (template matching)
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Motivation: noise reduction

• Even multiple images of the same static scene will 
not be identical.

9Slide credit: Adapted from Kristen Grauman



Common types of noise

– Salt and pepper noise: 
random occurrences of   
black and white pixels

– Impulse noise: random 
occurrences of white 
pixels

– Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

10Slide credit: Steve Seitz



Gaussian noise

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

What is impact of the sigma?Slide credit: Kristen Grauman

Figure from Martial Hebert 11



Motivation: noise reduction

• Even multiple images of the same static scene will 
not be identical.

• How could we reduce the noise, i.e., give an estimate 
of the true intensities?

• What if there’s only one image?

12Slide credit: Kristen Grauman



First attempt at a solution
• Let’s replace each pixel with an average of all the 

values in its neighborhood
• Assumptions: 

– Expect pixels to be like their neighbors
– Expect noise processes to be independent from pixel to pixel
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First attempt at a solution
• Let’s replace each pixel with an average of all the 

values in its neighborhood
• Moving average in 1D:

14Slide credit: S. Marschner



Weighted Moving Average
• Can add weights to our moving average
• Weights [1, 1, 1, 1, 1]  / 5 

15Slide credit: S. Marschner



Weighted Moving Average
• Non-uniform weights [1, 4, 6, 4, 1] / 16

16Slide credit: S. Marschner



Image filtering

• Image filtering: compute function of local 
neighborhood at each position

• Really important!
– Enhance images

• Denoise, resize, increase contrast, etc.
– Extract information from images

• Texture, edges, distinctive points, etc.
– Detect patterns

• Template matching
– Deep Convolutional Networks



Moving Average In 2D
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Smoothing with box filter



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.0035 x 5, s = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel



Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel



Gaussian filters
• Remove “high-frequency” components from the 

image (low-pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get 

same result as larger-width kernel would have
– Convolving two times with Gaussian kernel of width σ is 

same as convolving once with kernel of width  σ√2 
• Separable kernel

– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:





Convolutional Neural Networks
a

(C) Dhruv Batra 39

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



preview:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:  200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good when 
input image is registered (e.g., face 
recognition).

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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STATIONARITY? Statistics is similar at 
different locations

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Share the same parameters across different 
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato



*        
-1  0  1
-1  0  1
-1  0  1

=        

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 45



Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 46



32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer

activation maps

6

28

28

Multiple filters: if we have 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 
architecture from [Simonyan and Zisserman 2014].

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing Learned Filters

(C) Dhruv Batra 53
Figure Credit: [Zeiler & Fergus ECCV14]



Visualizing Learned Filters

(C) Dhruv Batra 54
Figure Credit: [Zeiler & Fergus ECCV14]



Visualizing Learned Filters

(C) Dhruv Batra 55
Figure Credit: [Zeiler & Fergus ECCV14]



two more layers to go: POOL/FC

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



By “pooling” (e.g., taking max) filter

responses at different locations we gain 
robustness to the exact spatial location of 
features.

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 57



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

dim 1

dim 2

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:  200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato



3072
1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNNs for Image Processing



Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Why do we get different, distance-dependent 
interpretations of hybrid images?

?

Slide: Hoiem







Colorization
● Given a grayscale image, 

colorize the image 
realistically

● Zhang et al. pose colorization 
as classification task and use 
class-rebalancing to improve 
results

● Demonstrate higher rates of 
fooling humans using 
“colorization Turing test”

Colorful Image Colorization. Richard Zhang, Phillip Isola, Alexei A. Efros. ECCV 2016.



Colorization
● Training data: decompose any RGB image into L*a*b color space

○ L: grayscale input (lightness channel)
○ ab: color channels

● Train CNN with one million color images and a new objective 
function to incorporate more diverse colors. Many possible correct 
colorizations!

Colorful Image Colorization. Richard Zhang, Phillip Isola, Alexei A. Efros. ECCV 2016.



How to convert the inferred 
distribution to an image?

● 313-way classification over 
discretized ab color bins

● Network will output a 
distribution z over colors at 
each pixel. Need to convert to 
a single pixel value

○ Mode: vibrant but 
sometimes spatially 
inconsistent (e.g., the red 
splotches on the bus)

○ Mean: produces spatially 
consistent but desaturated 
results, exhibiting an 
unnatural sepia tone



DeOldify

70
https://github.com/jantic/DeOldify



Super-Resolution
Low resolution

High resolution



Super-Resolution as a task
● Quality-degrading factors / sources of noise:

○ Camera shake, shadows, motion blur, radial distortion from fisheye/GoPro type 
cameras, poor contrast, poor lighting, lossy compression, transmission defects, 
dust, haze, smoke, and mist, motion of the camera sensor platform, moving 
objects captured within the observed scene, e.g. people and vehicles.

● How to measure super-resolution?
○ Peak signal-to-noise ratio (PSNR), higher is better. Relies upon the Mean 

Square Error (MSE) error metric to evaluate image compression quality 
between two images:



An early CNN paper (2016)

73Dong, Chao, et al. "Learning a deep convolutional network for image super-
resolution." European conference on computer vision. Springer, Cham, 2014.



An early CNN paper (2016)

74Dong, Chao, et al. "Learning a deep convolutional network for image super-
resolution." European conference on computer vision. Springer, Cham, 2014.

Upscaling factor of 3 !



Underexposed Photo Enhancement
● Goal: enhance extreme low-

light imaging with severely 
limited illumination (e.g., 
moonlight) and short exposure 
(exposure time is set to 1/30 
second)

● The less light there is, the more 
ISO you need

○ High ISO can be used to 
increase brightness, but 
amplifies noise

○ Leads to low signal-to-
noise ratio (SNR) due to 
low photon counts

Learning to See in the Dark. Qifeng Chen, Vladlen Koltun. CVPR 2018.



Solution? Collect dataset and train a deep network

● See-in-the-Dark (SID) dataset 
contains 5094 raw short exposure 
images, each with a corresponding 
long-exposure reference image

● Corresponding reference (ground 
truth) images captured with 100-
300x longer exposure (i.e. 10 to 30 
seconds)

● Overcome low photon counts!
● Train deep neural networks to learn 

the image processing pipeline w/ 
L1 loss.

Learning to See in the Dark. Qifeng Chen, Vladlen Koltun. CVPR 2018.



Underexposed Photo Enhancement
● Learn image-to-image mapping? Too hard!
● Instead estimate an image-to-illumination 

mapping (model varying-lighting 
conditions)

○ Illumination maps for natural images 
typically have relatively simple forms with 
known priors

● Then take illumination map to light up the 
underexposed photo.

● Minimize (reconstruction loss + 
smoothness loss + color loss) 

Underexposed Photo Enhancement Using Deep Illumination Estimation. Wang et al. CVPR 2019.



Image Inpainting

● Perceptual loss is added to ELBO, 
the typical objective function used in 
variational autoencoders, to increase 
the sharpness and overall quality of 
inpainted images

● Demonstrate results on attribute-
guided image completion

Variational Image Inpainting. Cusuh Ham*, Amit Raj*, Vincent Cartillier*, Irfan Essa. NeuRIPS 2018 Workshop.

input

: generated image
: ground truth image

: activation of the lth layer of a pre-trained VGG

not smiling smiling ground truth



Image Inpainting
● Proposes partial convolutions, comprised of a masked & re-normalized 

convolution operator
● Updates mask automatically after partial convolutions, removing any masking 

where partial convolution was able to operate on unmasked value

Image Inpainting for Irregular Holes Using Partial Convolutions. Liu et al. ECCV 2018.


