
5. Segmentation

9. Stitching
12. 3D Shape

3. Image Processing

6-7. Structure from Motion

10. Computational Photography

4. Features

8. Motion

11. Stereo

13. Image-based Rendering

14. Recognition

Image Formation

2.1 Geometric primitives and transformations 31
2.1.1 Geometric primitives 32
2.1.2 2D transformations 35
2.1.3 3D transformations 39
2.1.4 3D rotations 41
2.1.5 3D to 2D projections 46
2.1.6 Lens distortions 58
2.2 Photometric image formation 60
2.2.1 Lighting 60
2.2.2 Reflectance and shading 62
2.2.3 Optics 68
2.3 The digital camera 73
2.3.1 Sampling and aliasing 77
2.3.2 Color 80
2.3.3 Compression 90
2.4 Additional reading 93
2.5 Exercises 93

Image Formation

2.1 Geometric primitives and transformations 31
2.1.1 Geometric primitives 32
2.1.2 2D transformations 35
2.1.3 3D transformations 39
2.1.4 3D rotations 41
2.1.5 3D to 2 D projections 46
2.1.6 Lens distortions 58
2.2 Photometric image formation 60
2.2.1 Lighting 60
2.2.2 Reflectance and shading 62
2.2.3 Optics 68
2.3 The digital camera 73
2.3.1 Sampling and aliasing 77
2.3.2 Color 80
2.3.3 Compression 90
2.4 Additional reading 93
2.5 Exercises 93

2.1.1 Geometric Primitives

- 2D points:
- 2D lines:
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

2D Coordinate Frames \& Points

- coordinates x and y

2D Lines

- Line I = ax+by=c

Homogeneous Coordinates

- Uniform treatment of points and lines
- Line-point incidence: $\left.\right|^{\top} p=0$

Join = cross product !

- Join of two lines is a point: $\mathrm{p}=\mathrm{l}_{1} \times \mathrm{l}_{2}$

- Join of two points is a line:
$\mathrm{l}=\mathrm{p}_{1} \times \mathrm{p}_{2}$

Automatic estimation of vanishing points and lines

Joining two parallel lines?

(a,b,c)
$p=\left|\begin{array}{lll}i & j & k \\ a & b & c \\ a & b & d\end{array}\right|=\left[\begin{array}{c}b d-c b \\ c a-a d \\ 0\end{array}\right]$
(a,b,d)

Points at Infinity !

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\begin{array}{cc}
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

2.1.1 Geometric Primitives

homogeneous augmented

- 2D points: $(x, y), \tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\boldsymbol{x}}$
- 2D lines: $\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}}=a x+b y+c=0$
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

2.1.1 Geometric Primitives

- 2D points: $(x, y), \tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\boldsymbol{x}}$
- 2D lines: $\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}}=a x+b y+c=0$
- 2D conics:
- 3D points: $\boldsymbol{x}=(x, y, z) \tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$
- 3D planes: $\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{m}}=a x+b y+c z+d=0$
- 3D lines:

2.1.1 Geometric Primitives

- 2D points: $(x, y), \tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\boldsymbol{x}}$
- 2D lines: $\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}}=a x+b y+c=0$
- 2D conics: $\tilde{x}^{T} Q \tilde{x}=0$
- 3D points: $\boldsymbol{x}=(x, y, z) \tilde{\boldsymbol{x}}=(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$
- 3D planes: $\overline{\boldsymbol{x}} \cdot \tilde{\boldsymbol{m}}=a x+b y+c z+d=0$
- 3D lines: $r=(1-\lambda) p+\lambda q$

$$
\begin{aligned}
\tilde{\boldsymbol{r}} & =\mu \tilde{\boldsymbol{p}}+\lambda \tilde{\boldsymbol{q}} \\
\boldsymbol{r} & =\boldsymbol{p}+\lambda \hat{\boldsymbol{d}}
\end{aligned}
$$

2.1.2: 2D Transformations

2.1.2: 2D Transformations

translation

affine

rotation

perspective

aspect

cylindrical

2D planar transformations

2D planar transformations

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{gathered}
x^{\prime}=a x \\
y^{\prime}=b y
\end{gathered}
$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

matrix representation of scaling:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix S }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

y

2D planar transformations

2D planar transformations

y

2D planar and linear transformations

Scale	Flip across y
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$
Rotate	Flip across origin
$\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$
Shear	Identity
$\mathbf{M}=\left[\begin{array}{cc}1 & s_{x} \\ s_{y} & 1\end{array}\right]$	$\mathbf{M}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$

2D translation

2D translation using homogeneous coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

2D Transformations in homogeneous coordinates

Reminder: Homogeneous coordinates

Conversion:
Special points:

- inhomogeneous \rightarrow
augmented/homogeneous

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- homogeneous \rightarrow inhomogeneous

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- point at infinity
- undefined

$$
\left[\begin{array}{lll}
x & y & 0
\end{array}\right]
$$

- scale invariance

$$
\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}=\lambda\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}
$$

2D transformations

Re-write these transformations as 3×3 matrices:

$$
\begin{aligned}
& \begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { translation }
\end{array} \\
& {\left[\begin{array}{c}
x^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\underset{\text { scaling }}{\left[\begin{array}{l}
?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[} \\
&]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { rotation } \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& \text { shearing }
\end{aligned}
$$

2D transformations

Re-write these transformations as 3×3 matrices:

$$
\begin{aligned}
& \begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { translation }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[} \\
&]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { rotation } \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& \text { shearing }
\end{aligned}
$$

2D transformations

Re-write these transformations as 3×3 matrices:

$$
\begin{aligned}
& \begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] }=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { translation }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[} \\
& \text { ? } \quad]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { rotation } \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& \text { shearing }
\end{aligned}
$$

2D transformations

Re-write these transformations as 3×3 matrices:

$$
\begin{array}{cc}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} & {\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { translation } & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=} \\
{\left[\begin{array}{c}
{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]\right.} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { scaling }}{\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { shearing }}{\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\boldsymbol{\beta}_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]}
\end{array}
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =? ?
\end{aligned}
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =\operatorname{translation}\left(\mathrm{t}_{\left.\mathrm{x}, \mathrm{t}_{\mathrm{y}}\right)} \quad \operatorname{rotation}(\theta)\right.
\end{aligned}
$$

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	$?$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	$?$
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]$	$?$
affine	$[\boldsymbol{A}]$	$?$
projective	$[\tilde{\boldsymbol{H}}]$	$?$

Translation

Translation: $\left[\begin{array}{ccc}1 & 0 & t_{1} \\ 0 & 1 & t_{2} \\ 0 & 0 & 1\end{array}\right]$

How many degrees of freedom?

Euclidean/Rigid

$\underset{\text { Euclidean (rigid): }}{\text { rotation + translation }} \quad\left[\begin{array}{ccc}\cos \theta & -\sin \theta & r_{3} \\ \sin \theta & \cos \theta & r_{6} \\ 0 & 0 & 1\end{array}\right]$

How many degrees of freedom?

Affine

Are there any values that are related?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations
- + translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also

Does the last coordinate w ever change?

Projective transformations

Projective transformations are combinations of

- affine transformations;
- + projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

8 DOF: vectors (and therefore matrices) are defined up to scale)
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	$?$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	$?$
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]$	$?$
affine	$[\boldsymbol{A}]$	$?$
projective	$[\tilde{\boldsymbol{H}}]$	$?$

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	2
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	3
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]$	4
affine	$[\boldsymbol{A}]$	6
projective	$[\tilde{\boldsymbol{H}}]$	8

2.1.3: 3D Transformations

- Need a way to specify the six degrees-of-freedom of a rigid body.
- Why are their 6 DOF?

A rigid body is a collection of points whose positions relative to each other can't change

Fix one point, three DOF

Fix second point, two more DOF (must maintain distance constraint)

Third point adds one more DOF, for rotation around line

Notations

- Superscript references coordinate frame
- $\quad A P$ is coordinates of P in frame A
- $\quad{ }^{B} P$ is coordinates of P in frame B
- Example :

Translation

- Using augmented/homogeneous coordinates, translation isexpressed as a matrix multiplication.
${ }^{B} P={ }^{A} P+{ }^{B} O_{A}$
$\left[\begin{array}{l}{ }^{B} P \\ 1\end{array}\right]=\left[\begin{array}{cc}I & { }^{B} O_{A} \\ 0 & 1\end{array}\right]\left[\begin{array}{l}{ }^{A} P \\ 1\end{array}\right]$
- Translation is communicative

Rotation in homogeneous coordinates

- Using homogeneous coordinates, rotation can be expressed as a matrix multiplication.

$$
\begin{aligned}
{ }^{B} P & ={ }_{A}^{B} R^{A} P \\
{\left[\begin{array}{l}
B \\
1
\end{array}\right] } & =\left[\begin{array}{cc}
{ }_{A}^{B} R & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
{ }^{A} P \\
1
\end{array}\right]
\end{aligned}
$$

- R is a rotation matrix:
- Columns are unit vectors
- Columns are mutually orthogonal
- Inverse is transpose
- Rotation is not communicative

3D Rigid transformations

$$
{ }^{B} P={ }_{A}^{B} R^{A} P+{ }^{B} O_{A}
$$

3D Rigid transformations

- Unified treatment using homogeneous coordinates.

$$
\begin{aligned}
{\left[\begin{array}{l}
{ }^{B} P \\
1
\end{array}\right] } & =\left[\begin{array}{cc}
1 & { }^{B} O_{A} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
{ }_{A}^{B} R & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
{ }^{A} P \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
{ }_{A}^{B} R & { }^{B} O_{A} \\
0^{T} & 1
\end{array}\right]\left[\begin{array}{l}
{ }^{A} P \\
1
\end{array}\right] \\
& {\left[\begin{array}{c}
{ }^{B} P \\
1
\end{array}\right]={ }_{A}^{B} T\left[\begin{array}{c}
{ }^{A} P \\
1
\end{array}\right] }
\end{aligned}
$$

Hierarchy of 3D
 Transforms

- Subgroup Structure:
- Translation (? DOF)
- Rigid 3D (? DOF)
- Affine (? DOF)
- Projective (? DOF)

Hierarchy of 3D Transforms

- Subgroup Structure:
- Translation (3 DOF)
- Rigid 3D (6 DOF)
- Affine (12 DOF)
- Projective (15 DOF)

2.1.5: 3D to 2D: Projection

3D world
2D image

Point of observation

Orthographic Projection

Pinhole camera

Camera obscura: the pre-camera

- Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Projection can be tricky...

Projection can be tricky...

Camera and World Geometry

Pinhole Camera

- Fundamental equation:

Homogeneous Coordinates

Linear transformation of homogeneous (projective) coordinates
$m=\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\left[\begin{array}{lll}I & 0\end{array}\right] M=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ T\end{array}\right]$
Recover image (Euclidean) coordinates by normalizing:
$\hat{u}=\frac{u}{w}=\frac{X}{Z}$
$\hat{v}=\frac{v}{w}=\frac{Y}{Z}$

We can see infinity!

Railroad: parallel lines

Vanishing points and lines

Vanishing points and lines

Pixel coordinates in 2D

$(0.5,0.5) \quad 640$

Intrinsic Calibration

3×3 Calibration Matrix K

Recover image (Euclidean) coordinates by normalizing:
$\hat{u}=\frac{u}{w}=\frac{\alpha X+s Y+u_{0}}{Z}$
$\hat{v}=\frac{v}{w}=\frac{\beta Y+v_{0}}{Z}$

Camera Pose

In order to apply the camera model, objects in the scene must be expressed in camera coordinates.

Projective Camera Matrix

Camera $=$ Calibration \times Projection \times Extrinsics

$$
\begin{aligned}
& m=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{lll}
\alpha & s & u_{0} \\
& \beta & v_{0} \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
T
\end{array}\right] \\
& =K\left[\begin{array}{ll}
R & t
\end{array}\right] M=P M
\end{aligned}
$$

Projective Geometry

What is lost?

- Length

Length and area are not preserved

Figure by David Forsyth

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

- Straight lines are still straight

Field of View (Zoom, focal length)

From London and Upton

2.1.6 Radial Distortion

Corrected Barrel Distortion

