
Visual Servo Control

With contributions from
• Nicholas Gans -- University of Texas at Dallas
• Peter Corke -- Queensland University of Technology, Australia
• Sourabh Battacharya – Iowa State University

*includes material from the articles “Visual Servo Control, Part I: Basic
Approaches,” and “Visual Servo Control, Part II: Advanced
Approaches,” in the IEEE Robotics and Automation Society Magazine,
by François Chaumette and Seth Hutchinson.

Seth Hutchinson
Georgia Institute of Technology

Visual Servo: The Basic Problem

• A camera views the scene from an initial pose, yielding the
current image.

• The desired image corresponds to the scene as viewed
from the desired camera pose.

• Determine a camera motion to move from initial to desired
camera pose, using the time-varying image as input.

There are many variations on the problem:
• Eye-in-hand vs. fixed camera
• Which image features to use
• How to specify desired images for specified tasks
• Etc…

An Example

In this example, coordinates of
image points are the features

Blue points are current features

Red points are desired features

Error vectors are shown in pink

Coarsely Calibrated Visual Servoing of a Nonholonomic

mobile robot Using a Central Catadioptric Vision System

Romeo Tatsambon, and Andrea Cherubini --- IRISA, Rennes

Han Ul Yoon --- University of Illinois

Robot
Controller

Image Feature
Extraction

Visual Servo
Controller

𝑠∗

m(t)s(m(t),a)

ξe(t) = s(t) - s*

Basic architecture for Visual Servo Control

At this level of abstraction, it’s remarkably similar to the
architecture for any garden variety feedback control system.

Robot
Controller

Image Feature
Extraction

Visual Servo
Controller

𝑠∗

m(t) is a set of image measurements
(e.g., the image coordinates of
interest points, or the parameters of
a set of image segments).

m(t)s(m(t),a)

ξe(t) = s(t) - s*

s(m(t),a) is a vector of k visual features,
computed from the image.

a is a set of parameters that represent
additional knowledge about the system (e.g.,
coarse camera intrinsic parameters or 3D
model of objects).

s* contains the desired values of the features.

Error defined by e(t) = s(t) - s*

Velocity to camera = ξ

Visual Servo Control --- The Basic Idea

The aim of vision-based control schemes is to minimize an error e(t)
which is typically defined by

𝑒 𝑡 = 𝑠 𝑚 𝑡 , 𝑎 − 𝑠∗

• m(t) is a set of image measurements (e.g., the image coordinates of interest
points, or the parameters of a set of image segments).

• s(m(t),a) is a vector of k visual features, computed from the image.

• a is a set of parameters that represent additional knowledge about the
system (e.g., camera intrinsic parameters or 3D object model).

• s* contains the desired values of the features.

Typically, one merely writes: e(t) = s(t) - s*

Some Basic Assumptions

There are numerous considerations when designing a visual
servo system. For now, we will consider only systems that satisfy
the following basic assumptions:

• Eye-in-hand systems — the camera is mounted on the end
effector of a robot and treated as a free-flying object with
configuration space 𝑄 = SE(3).

• Static (i.e., motionless) targets.

• Purely kinematic systems — we do not consider the dynamics
of camera motion, but assume that the camera can execute
accurately the applied velocity control.

• Perspective projection — the imaging geometry can be
modeled as a pinhole camera.

Some or all of these may be relaxed as we progress to more
advanced topics.

Designing the Control Law --- The Basic Idea

Given 𝑠, control design can be quite simple.

A typical approach is to design a velocity controller, which requires the
relationship between the time variation of s and the camera velocity.

• Let the spatial velocity of the camera be denoted by ξ = (𝑣, 𝜔)

▪ 𝑣 is the instantaneous linear velocity of the origin of the camera
frame

▪ 𝜔 is the instantaneous angular velocity of the camera frame

• The relationship between ሶ𝑠 and ξ is given by ሶ𝑠 = 𝐿ξ

𝐿 ∈ ℝ6 𝑥 𝑘 is named the interaction matrix [Espiau, et al. 1992], or
the image Jacobian [Hutchinson, Hager & Corke, 1996].

⟹ The key to visual servo --- choosing s and the control law.

Designing the Control Law (cont)

Let’s derive the relationship between ሶ𝑒 and ξ, i.e., how does the error
evolve as a function of the camera body velocity?

• Using the previous equations

𝑒(𝑡)= 𝑠 𝑡 − 𝑠∗ and ሶ𝑠 = 𝐿 ξ

we can easily obtain the relationship between the camera velocity
and the rate of change of the error ሶ𝑒

ሶ𝑒(𝑡) = ሶ𝑠 𝑡 = 𝐿 ξ

assuming that 𝑠∗ is constant.

• The relationship between ξ and ሶ𝑠 is the same as between ξ and ሶ𝑒.

Now our problem is merely to find the control input ξ = 𝑢(𝑡) that
gives the desired error performance.

An Example

In this example, coordinates of
image points are the features

Blue points are current features

Red points are desired features

Error vectors are shown in pink

• In many cases, we would like to achieve an exponential decoupled
decrease of the error, 𝑒 𝑡 = e(t0)exp(−𝜆𝑡)

• This is achieved if the error obeys the ordinary differential equation
ሶ𝑒(𝑡) = −λ𝑒

• Combining ሶ𝑒(𝑡) = −λ𝑒 and ሶ𝑒(𝑡) = 𝐿 ξ we obtain
𝐿ξ = − λ 𝑒

• If we assume velocity control, i.e., 𝑢 𝑡 = ξ, we simply solve the
above to obtain

𝑢 𝑡 = ξ = −λ 𝐿+𝑒

where 𝐿+ ∈ ℝ𝑘 𝑥 6 is chosen as the Moore-Penrose pseudo-inverse
of 𝐿

𝐿+ = (𝐿𝑇𝐿) −1𝐿𝑇

Designing the Control Law (cont)

Practical Issues

In practice, it is impossible to know exactly the value of 𝐿 or of 𝐿+ ,
since these depend on measured data.

The actual value of 𝐿 is thus an approximation, and the actual control
law is given as

ξ = − λ 𝐿+ 𝑒

There are several choices for 𝐿+ :

• 𝐿+ = 𝐿+: Compute an estimate 𝐿, use the pseudo-inverse of the estimate

• Directly estimate 𝐿+

• Let 𝐿+ be approximated by a constant matrix (e.g., 𝐿+ for the goal camera

configuration)

Context – Visual Servo in the Bigger Picture

• Learning, planning, perception and action are often tightly coupled
activities.

• Visual servo control is the coupling of perception and action

— hand-eye coordination.

• Basic visual servo controllers can serve as primitives for planning
algorithms.

• Switching between control laws is equivalent to executing a plan.

• There are a number of analogies between human hand-eye
coordination and visual servo control.

A rigorous understanding of the performance of visual servo control
systems provides a foundation for sensor-based robotics.

Visual Servo Control --- Some History
Visual servo control is merely the use of computer vision data to
control motion of a robot

The first real-time visual servo systems were
reported in

▪ Agin, 1979
▪ Weiss et al., 1984, 1987
▪ Feddema et al., 1989

In some sense, Shakey [SRI, 1966-1972 or so]
was an example of visual servo system, but
with a very, very slow servo rate

In each of these, simple image features (e.g., centroids of binary
objects) were used, primarily due to limitations in computation power.

Overview

This talk will focus on the control and performance issues,
leaving aside the computer vision issues (e.g., feature
tracking).

The main issues --- how to choose 𝑠(𝑡) and the corresponding
control law:

– Using 3D reconstruction to define 𝑠(𝑡)

– Using image data to directly define 𝑠 𝑡

– Partitioning degrees of freedom

– Switching between controllers

Position-Based Visual Servo Control

Position-Based Visual Servo Control

• Computer vision data are used to compute the pose of the camera (𝑑 and 𝑅)
relative to the world frame

• The error 𝑒 𝑡 is defined in the pose space 𝑑 ∈ ℝ3, 𝑅 ∈ 𝑆𝑂 3 .

• The control signal ξ = (𝑣, 𝜔) is a camera body velocity.

• The camera velocity ξ is specified w.r.t. the camera frame.

If the goal pose is given by 𝑑 = 0, 𝑅 = 𝐼, the role of the computer
vision system is to provide, in real time, a measurement of pose error.

PBVS (cont.)

If 𝑢𝜃 is the axis/angle parameterization of 𝑅, the error is given by

𝑒(𝑡) =
𝑑
𝑢𝜃

and its derivative is given by

ሶ𝑒 =
𝑅 0
0 𝐿𝜔(𝑢𝜃)

ξ = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ

in which [Malis 98]

𝐿𝜔(𝑢𝜃) = 𝐼 −
𝜃

2
𝑢× + 1 – sinc 𝜃/sinc2

𝜃

2
𝑢×

PBVS (cont.)

Since 𝐿𝜔 is nonsingular when 𝜃 ≠ 2𝑘𝜋, [Malis, Chaumette, Boudet 99],
to achieve the error dynamics ሶ𝑒 = -λ𝑒 we can use

−λ𝑒 = ሶ𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ = −λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

The motivation: The solution of the differential equation ሶ𝑒 = −λ𝑒 is a
decaying exponential.

That’s nice --- but how do we know that it really works? After all, 𝑒(𝑡) is
a vector, and 𝐿, is not a constant matrix...

This isn’t really a nice, scalar, first-order linear differential equation.

Lyapunov Theory

Lyapunov theory provides a powerful tool for analyzing the stability of
nonlinear systems.

• Consider a nonlinear system on ℝ𝑛

ሶ𝑥 = 𝑓(𝑥)

where 𝑓(𝑥) is a vector field on ℝ𝑛, and suppose that f(0) = 0.

• The origin in ℝ𝑛 is said to be an equilibrium point for the system.

What does this have to do with our visual servo problem?!?!

• If we use a control law 𝑢 𝑡 = ξ = −λ 𝐿+𝑒 and if ሶ𝑒 = 𝐿ξ,

• then 𝑒 𝑡 = 0 is an equilibrium point for our visual servo system,
since

e = 0 → −λ 𝐿+𝑒 = ξ = 0 → 𝐿ξ = ሶ𝑒 = 0

When the error is zero, the control input is zero, thus ሶ𝑒 is zero.

Lyapunov Theory

Lyapunov theory provides a powerful tool for analyzing the stability of
nonlinear systems.

• Consider a nonlinear system on ℝ𝑛

ሶ𝑥 = 𝑓(𝑥)

where 𝑓(𝑥) is a vector field on ℝ𝑛, and suppose that f(0) = 0.

• The origin in ℝ𝑛 is said to be an equilibrium point for the system.

Lyapunov Functions:

• Let 𝓛(𝑥): ℝ𝑛 → ℝ be a function with continuous first partial
derivatives in a neighborhood of the origin.

• Let 𝓛 be positive definite: 𝓛(0) = 0, 𝓛(𝑥) > 0 for all 𝑥 ≠ 0.

• 𝓛 is called a Lyapunov function candidate for the system.

Lyapunov Theory (cont)

THEOREM: The origin is a stable equilibrium for the system if
there exists a Lyapunov function candidate 𝓛 such that ሶ𝓛 is
negative semi-definite along solution trajectories for the
system, i.e.,

ሶ𝓛 =
𝜕𝓛

𝜕𝑥
ሶ𝑥 =

𝜕𝓛

𝜕𝑥
𝑓 𝑥 ≤ 0

THEOREM: The origin is asymptotically stable if there exists a

Lyapunov function candidate 𝓛 such that ሶ𝓛 is negative
definite along solution trajectories for the system

ሶ𝓛 =
𝜕𝓛

𝜕𝑥
𝑓 𝑥 < 0

Lyapunov Theory and Visual Servo Control

The two versions of stability provide different sorts of
performance guarantees:

• Stability guarantees that the system will remain within a
neighborhood of the equilibrium point, provided the initial state
is sufficiently close to the equilibrium point.

• Asymptotic stability guarantees that the system will converge to
the equilibrium point, provided the initial state is sufficiently
close to the equilibrium point.

In some cases, the system error is the simplest Lyapunov function
candidate --- this is the case for many visual servo systems.

𝓛 =
1

2
𝑒(𝑡) 2 → ሶ𝓛 = 𝑒𝑇 𝑡 ሶ𝑒(𝑡)

Lyapunov stability of PBVS

Recall our PBVS controller:

−λ𝑒 = ሶ𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ = − λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

Using the Lyapunov function 𝓛 =
1

2
𝑒(𝑡) 2 we obtain

ሶ𝓛 = 𝑒𝑇 𝑡 ሶ𝑒(𝑡)

= 𝑒𝑇 𝑡 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ

Lyapunov stability of PBVS

Recall our PBVS controller:

−λ𝑒 = ሶ𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ = − λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

Using the Lyapunov function 𝓛 =
1

2
𝑒(𝑡) 2 we obtain

ሶ𝓛 = 𝑒𝑇 𝑡 ሶ𝑒(𝑡)

= 𝑒𝑇 𝑡 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ

= - λ 𝑒𝑇𝐿𝑝𝑏𝑣𝑠(𝑢𝜃) 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

= - λ 𝑒(𝑡) 2

and we have, not surprisingly, asymptotic stability.

PBVS Example

Why not just use PBVS?

• Feedback is computed using estimated quantities that are a function
of the system calibration parameters. Thus,

ሶ𝓛 = - λ 𝑒𝑇𝐿𝑝𝑏𝑣𝑠(𝑢𝜃) 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

and we need 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃) 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

to be positive definite.

• Even small errors computing the orientation of the cameras can lead
to reconstruction errors that significantly impact system accuracy.

• Position-based control requires an accurate model of the target --- a
form of calibration.

• In task space, the robot will move a minimal distance, but in the
image, features may move a non-minimal distance during execution.

Features may leave the field of view.

PBVS Task Example
Large translation and rotation about all axes

Image-Based Visual Servo Control

Image-Based Visual Servo Control

For Image-Based Visual Servo (IBVS)

• Features 𝑠(𝑡) are extracted from computer vision data.

• Camera pose is not explicitly computed.

• The error is defined in the image feature space: 𝑒 𝑡 = 𝑠 𝑡 – 𝑠∗

• The control signal, ξ = (𝑣, 𝜔) is again a camera body velocity
specified w.r.t. the camera frame, but for IBVS it is computed directly
using 𝑠 𝑡 .

For example, if the feature is a single image point with image plane
coordinates 𝑥 and 𝑦, we have 𝑠(𝑡) = (𝑥(𝑡), 𝑦(𝑡))

Since ሶ𝑒 𝑡 = ሶ𝑠(𝑡), we’ll need to know the relationship between ሶ𝑠 and ξ
to design a controller that achieves the error dynamics ሶ𝑒 = −𝜆𝑒.

Imaging Geometry

Consider a point P with coordinates (X,Y,Z) w.r.t. the camera frame.

Using perspective projection, P’s image plane coordinates are given by

𝑥 = λ
𝑋

𝑍
𝑦 = λ

𝑌

𝑍

in which λ is the camera focal length.

𝑃 = (𝑋, 𝑌, 𝑍)

x
y

z

Optical axis

𝑠 = (𝑥, 𝑦)

Focal length λ

Camera frame

The Interaction Matrix (for a point feature)

As an example, consider the interaction matrix for a single point, with
coordinates (X,Y,Z).

To determine the interaction matrix for the point:

1. Compute the time derivatives for 𝑥, 𝑦

2. Express these time derivatives in terms of 𝑥, 𝑦, ሶ𝑋, ሶ𝑌, ሶ𝑍 and 𝑍

3. Find expressions for ሶ𝑋, ሶ𝑌, ሶ𝑍 in terms of ξ and 𝑋, 𝑌, 𝑍

(i.e., eliminate 𝑋, 𝑌)

4. Combine equations and grind through the algebra

The Interaction Matrix (for a point feature)

Step 1: Compute the time derivatives for 𝑥, 𝑦

Recall 𝑥 = λ
𝑋

𝑍
and 𝑦 = λ

𝑌

𝑍

Using the quotient rule

ሶ𝑥 = λ
𝑍 ሶ𝑋 −𝑋 ሶ𝑍

𝑍2
and ሶ𝑦 = λ

𝑍 ሶ𝑌 −𝑌 ሶ𝑍

𝑍2

The Interaction Matrix (for a point feature)

Step 2: Express time derivatives in terms of 𝑥, 𝑦, ሶ𝑋, ሶ𝑌, ሶ𝑍, 𝑍

• The perspective projection equations can be rewritten to
give expressions for 𝑋 and 𝑌 as

𝑋 =
𝑥𝑍

λ
and 𝑌 =

𝑦𝑍

λ

• Substitute these into the equations for ሶ𝑥 ሶ𝑦 to obtain

ሶ𝑥 = λ
ሶ𝑋

𝑍
−

𝑥 ሶ𝑍

𝑍
and ሶ𝑦 = λ

ሶ𝑌

𝑍
−

𝑦 ሶ𝑍

𝑍

The Interaction Matrix (for a point feature)

Step 3: Find expressions for ሶ𝑋, ሶ𝑌, ሶ𝑍 in terms of ξ and 𝑋, 𝑌, 𝑍

The velocity of (the fixed point) P relative to the camera frame is
given by:

ሶ𝑃 = − 𝜔 × 𝑃 − 𝑣

which gives equations for each of ሶ𝑋, ሶ𝑌and ሶ𝑍.
Expanding ሶ𝑃 = − 𝜔 × 𝑃 − 𝑣 we obtain

ሶ𝑋 = -𝑣𝑥 −𝜔𝑦𝑍 + 𝜔𝑧𝑌
ሶ𝑌 = -𝑣𝑦 −𝜔𝑧𝑋 + 𝜔𝑥Z
ሶ𝑍 = -𝑣𝑧 −𝜔𝑥𝑌 + 𝜔𝑦X

Now it’s just algebra…

The Interaction Matrix (for a point feature)

Step 4: Combine equations and grind through the algebra

Combining equations, we obtain

ሶ𝑥 = −
λ

𝑍
𝑣𝑥 +

𝑥

𝑍
𝑣𝑧 +

𝑥𝑦

λ
𝜔𝑥 −

(λ2+𝑥2)

λ
𝜔𝑦 + 𝑦𝜔𝑧

ሶ𝑦 = −
λ

𝑍
𝑣𝑦 +

𝑦

𝑍
𝑣𝑧 +

(λ2+𝑦2)

λ
𝜔𝑥 −

𝑥𝑦

λ
𝜔𝑦 −𝑥𝜔𝑧

These equations can be written nicely in matrix form.

The Interaction Matrix (for a point feature)

In matrix form, we obtain:

ሶ𝑥
ሶ𝑦

=
−

λ

𝑍

0

0

−
λ

𝑍

𝑥

𝑍

𝑦

𝑍

𝑥𝑦

λ

λ2+𝑦2

λ

−
λ2+𝑥2

λ

−
𝑥𝑦

λ

𝑦

−𝑥
ξ

The Interaction Matrix (for a point feature)

In matrix form, we obtain:

ሶ𝑥
ሶ𝑦

=
−

λ

𝑍

0

0

−
λ

𝑍

𝑥

𝑍

𝑦

𝑍

𝑥𝑦

λ

λ2+𝑦2

λ

−
λ2+𝑥2

λ

−
𝑥𝑦

λ

𝑦

−𝑥
ξ

This can be written more compactly as
ሶ𝑠 = 𝐿 𝑠, 𝑧 𝜉

The matrix 𝐿 is known as the interaction matrix [Espiau, et al., 1992] or
the image Jacobian.

Weiss et al. [1987] used feature sensitivity matrix, while Feddema et al.,
[1989] merely used Jacobian to describe this matrix.

The Null Space of the Interaction Matrix

The null space of this interaction matrix is spanned by:

𝑥
𝑦
λ
0
0
0

0
0
0
𝑥
𝑦
λ

𝑥𝑦𝑍

−(𝑥2 + λ 2)𝑍
λ 𝑦𝑍

−λ 2

0
𝑥λ

λ 𝑥2 + 𝑦2 + λ 2 𝑍
0

−𝑥 𝑥2 + 𝑦2 + λ 2 𝑍
𝑥𝑦λ

− 𝑥2 + λ 2 𝑍

𝑥λ 2

The Null Space of the Interaction Matrix

The null space of this interaction matrix is spanned by:

𝑥
𝑦
λ
0
0
0

0
0
0
𝑥
𝑦
λ

𝑥𝑦𝑍

−(𝑥2 + λ 2)𝑍
λ 𝑦𝑍

−λ 2

0
𝑥λ

λ 𝑥2 + 𝑦2 + λ 2 𝑍
0

−𝑥 𝑥2 + 𝑦2 + λ 2 𝑍
𝑥𝑦λ

− 𝑥2 + λ 2 𝑍

𝑥λ 2

Intuitively, this basis of the null space corresponds to

• Translation along a projection ray

• Rotation about a projection ray

• Translation along the camera y-axis, keeping the camera pointed in the
correct direction using rotational motions

• Rotation about the camera y-axis, keeping the camera pointed in the
correct direction using the linear motion

These are the point motions that cannot be “seen” by the camera.

The Interaction Matrix for Multiple Image Points

• Since 𝐿 𝑠, 𝑍 has a nonzero null space, we cannot control all six degrees of
freedom for the camera motion using a single image point.

• One solution is to simply use multiple image points.

• In this case, we merely stack the interaction matrices to obtain

ሶ𝑠 =
ሶ𝑠1(𝑡)
⋮
ሶ𝑠𝑛(𝑡)

=
𝐿1(𝑠1, 𝑍1)

⋮
𝐿𝑛(𝑠𝑛, 𝑍𝑛)

ξ

• Using this approach, three points provide sufficient information to control
the camera’s six degrees of freedom.

• It is required to know the depth 𝑍𝑖 for each point (or at least an estimate).

Proportional Image-Based Control
As before, to achieve the error dynamics ሶ𝑒 = −λ𝑒

−λ𝑒 = ሶ𝑒 = ሶ𝑠 = 𝐿 𝑠, 𝑍 ξ

ξ = −λ 𝐿+ 𝑠, 𝑍 𝑒

in which 𝐿+ = (𝐿𝑇𝐿) −1𝐿𝑇.

Using the Lyapunov function 𝓛 =
1

2
𝑒 2 we obtain

ሶ𝓛 = 𝑒𝑇 ሶ𝑒
= 𝑒𝑇𝐿ξ
= −λ𝑒𝑇𝐿𝐿+𝑒

We have asymptotic stability when the matrix 𝐿𝐿+ is positive definite.

Unfortunately, this condition is rarely achieved, e.g., when dim 𝑠 > 6.

More on this a bit later…

IBVS Task Example
Large Translation and Rotation About All Axes

